Chen Jing, Fan Xin, Chen Qiao-Liang, Ren Wei, Li Qi, Wang Dong, He Jian
Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China.
The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, Jiangsu Province, China.
World J Gastrointest Oncol. 2025 May 15;17(5):104410. doi: 10.4251/wjgo.v17.i5.104410.
Esophageal cancer (EC), a common malignant tumor of the digestive tract, requires early diagnosis and timely treatment to improve patient prognosis. Automated detection of EC using medical imaging has the potential to increase screening efficiency and diagnostic accuracy, thereby significantly improving long-term survival rates and the quality of life of patients. Recent advances in deep learning (DL), particularly convolutional neural networks, have demonstrated remarkable performance in medical imaging analysis. These techniques have shown significant progress in the automated identification of malignant tumors, quantitative analysis of lesions, and improvement in diagnostic accuracy and efficiency. This article comprehensively examines the research progress of DL in medical imaging for EC, covering various imaging modalities such as digital pathology, endoscopy, computed tomography, It explores the clinical value and application prospects of DL in EC screening and diagnosis. Additionally, the article addresses several critical challenges that must be overcome for the clinical translation of DL techniques, including constructing high-quality datasets, promoting multimodal feature fusion, and optimizing artificial intelligence-clinical workflow integration. By providing a detailed overview of the current state of DL in EC imaging and highlighting the key challenges and future directions, this article aims to guide future research and facilitate the clinical implementation of DL technologies in EC management, ultimately contributing to better patient outcomes.
食管癌(EC)是一种常见的消化道恶性肿瘤,需要早期诊断和及时治疗以改善患者预后。利用医学影像对食管癌进行自动检测有可能提高筛查效率和诊断准确性,从而显著提高患者的长期生存率和生活质量。深度学习(DL),尤其是卷积神经网络的最新进展,在医学影像分析中展现出了卓越的性能。这些技术在恶性肿瘤的自动识别、病变的定量分析以及诊断准确性和效率的提高方面都取得了显著进展。本文全面审视了深度学习在食管癌医学影像方面的研究进展,涵盖了数字病理学、内窥镜检查、计算机断层扫描等各种成像模态。它探讨了深度学习在食管癌筛查和诊断中的临床价值及应用前景。此外,本文还讨论了深度学习技术临床转化必须克服的几个关键挑战,包括构建高质量数据集、促进多模态特征融合以及优化人工智能与临床工作流程的整合。通过详细概述深度学习在食管癌成像方面的现状,并突出关键挑战和未来方向,本文旨在指导未来研究,并推动深度学习技术在食管癌管理中的临床应用,最终为改善患者预后做出贡献。
World J Gastrointest Oncol. 2025-5-15
BMC Med Inform Decis Mak. 2023-7-17
J Appl Clin Med Phys. 2024-12
Stud Health Technol Inform. 2024-8-22
Bioengineering (Basel). 2024-5-19
World J Gastrointest Oncol. 2024-4-15
Front Med (Lausanne). 2024-3-6