文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习在食管癌自动检测中的研究现状与进展

Research status and progress of deep learning in automatic esophageal cancer detection.

作者信息

Chen Jing, Fan Xin, Chen Qiao-Liang, Ren Wei, Li Qi, Wang Dong, He Jian

机构信息

Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China.

The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, Jiangsu Province, China.

出版信息

World J Gastrointest Oncol. 2025 May 15;17(5):104410. doi: 10.4251/wjgo.v17.i5.104410.


DOI:10.4251/wjgo.v17.i5.104410
PMID:40487951
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12142226/
Abstract

Esophageal cancer (EC), a common malignant tumor of the digestive tract, requires early diagnosis and timely treatment to improve patient prognosis. Automated detection of EC using medical imaging has the potential to increase screening efficiency and diagnostic accuracy, thereby significantly improving long-term survival rates and the quality of life of patients. Recent advances in deep learning (DL), particularly convolutional neural networks, have demonstrated remarkable performance in medical imaging analysis. These techniques have shown significant progress in the automated identification of malignant tumors, quantitative analysis of lesions, and improvement in diagnostic accuracy and efficiency. This article comprehensively examines the research progress of DL in medical imaging for EC, covering various imaging modalities such as digital pathology, endoscopy, computed tomography, It explores the clinical value and application prospects of DL in EC screening and diagnosis. Additionally, the article addresses several critical challenges that must be overcome for the clinical translation of DL techniques, including constructing high-quality datasets, promoting multimodal feature fusion, and optimizing artificial intelligence-clinical workflow integration. By providing a detailed overview of the current state of DL in EC imaging and highlighting the key challenges and future directions, this article aims to guide future research and facilitate the clinical implementation of DL technologies in EC management, ultimately contributing to better patient outcomes.

摘要

食管癌(EC)是一种常见的消化道恶性肿瘤,需要早期诊断和及时治疗以改善患者预后。利用医学影像对食管癌进行自动检测有可能提高筛查效率和诊断准确性,从而显著提高患者的长期生存率和生活质量。深度学习(DL),尤其是卷积神经网络的最新进展,在医学影像分析中展现出了卓越的性能。这些技术在恶性肿瘤的自动识别、病变的定量分析以及诊断准确性和效率的提高方面都取得了显著进展。本文全面审视了深度学习在食管癌医学影像方面的研究进展,涵盖了数字病理学、内窥镜检查、计算机断层扫描等各种成像模态。它探讨了深度学习在食管癌筛查和诊断中的临床价值及应用前景。此外,本文还讨论了深度学习技术临床转化必须克服的几个关键挑战,包括构建高质量数据集、促进多模态特征融合以及优化人工智能与临床工作流程的整合。通过详细概述深度学习在食管癌成像方面的现状,并突出关键挑战和未来方向,本文旨在指导未来研究,并推动深度学习技术在食管癌管理中的临床应用,最终为改善患者预后做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c9f/12142226/2a2420a3c121/104410-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c9f/12142226/2a2420a3c121/104410-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c9f/12142226/2a2420a3c121/104410-g001.jpg

相似文献

[1]
Research status and progress of deep learning in automatic esophageal cancer detection.

World J Gastrointest Oncol. 2025-5-15

[2]
Application of artificial intelligence in the diagnosis of malignant digestive tract tumors: focusing on opportunities and challenges in endoscopy and pathology.

J Transl Med. 2025-4-9

[3]
Future prospects of deep learning in esophageal cancer diagnosis and clinical decision support (Review).

Oncol Lett. 2025-4-11

[4]
Enhancing clinical decision-making in endometrial cancer through deep learning technology: A review of current research.

Digit Health. 2024-11-18

[5]
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.

Cancer Biomark. 2025-3

[6]
Machine learning applications for early detection of esophageal cancer: a systematic review.

BMC Med Inform Decis Mak. 2023-7-17

[7]
Revolutionizing tumor detection and classification in multimodality imaging based on deep learning approaches: Methods, applications and limitations.

J Xray Sci Technol. 2024

[8]
Diabetic retinopathy screening through artificial intelligence algorithms: A systematic review.

Surv Ophthalmol. 2024

[9]
A Systematic Review of the Diagnostic Accuracy of Deep Learning Models for the Automatic Detection, Localization, and Characterization of Clinically Significant Prostate Cancer on Magnetic Resonance Imaging.

Eur Urol Oncol. 2024-11-14

[10]
A review of deep learning approaches for multimodal image segmentation of liver cancer.

J Appl Clin Med Phys. 2024-12

本文引用的文献

[1]
Explaining Deep Learning Models Applied in Histopathology: Current Developments and the Path to Sustainability.

Stud Health Technol Inform. 2024-8-22

[2]
Patterns and trends in esophageal cancer incidence and mortality in China: An analysis based on cancer registry data.

J Natl Cancer Cent. 2023-1-25

[3]
Deep learning empowered breast cancer diagnosis: Advancements in detection and classification.

PLoS One. 2024

[4]
Radiomics diagnostic performance for predicting lymph node metastasis in esophageal cancer: a systematic review and meta-analysis.

BMC Med Imaging. 2024-6-12

[5]
Study of a Deep Convolution Network with Enhanced Region Proposal Network in the Detection of Cancerous Lung Tumors.

Bioengineering (Basel). 2024-5-19

[6]
Revolutionizing Breast Cancer Detection With Artificial Intelligence (AI) in Radiology and Radiation Oncology: A Systematic Review.

Cureus. 2024-4-4

[7]
Esophageal cancer screening, early detection and treatment: Current insights and future directions.

World J Gastrointest Oncol. 2024-4-15

[8]
Deep learning assists detection of esophageal cancer and precursor lesions in a prospective, randomized controlled study.

Sci Transl Med. 2024-4-17

[9]
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2024

[10]
Esophageal cancer detection via non-contrast CT and deep learning.

Front Med (Lausanne). 2024-3-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索