Suppr超能文献

适应模型对失配负波的预测编码理论提出了挑战。

The Adaptation Model Offers a Challenge for the Predictive Coding Account of Mismatch Negativity.

作者信息

May Patrick J C

机构信息

Department of Psychology, Lancaster University, Lancaster, United Kingdom.

出版信息

Front Hum Neurosci. 2021 Nov 19;15:721574. doi: 10.3389/fnhum.2021.721574. eCollection 2021.

Abstract

An unpredictable stimulus elicits a stronger event-related response than a high-probability stimulus. This differential in response magnitude is termed the mismatch negativity (MMN). Over the past decade, it has become increasingly popular to explain the MMN terms of predictive coding, a proposed general principle for the way the brain realizes Bayesian inference when it interprets sensory information. This perspective article is a reminder that the issue of MMN generation is far from settled, and that an alternative model in terms of adaptation continues to lurk in the wings. The adaptation model has been discounted because of the unrealistic and simplistic fashion in which it tends to be set up. Here, simulations of auditory cortex incorporating a modern version of the adaptation model are presented. These show that locally operating short-term synaptic depression accounts both for adaptation due to stimulus repetition and for MMN responses. This happens even in cases where adaptation has been ruled out as an explanation of the MMN (e.g., in the stimulus omission paradigm and the multi-standard control paradigm). Simulation models that would demonstrate the viability of predictive coding in a similarly multifaceted way are currently missing from the literature, and the reason for this is discussed in light of the current results.

摘要

与高概率刺激相比,不可预测的刺激会引发更强的事件相关反应。这种反应幅度的差异被称为失配负波(MMN)。在过去十年中,用预测编码来解释MMN变得越来越流行,预测编码是一种关于大脑在解释感官信息时实现贝叶斯推理方式的拟议通用原则。这篇观点文章提醒我们,MMN产生的问题远未解决,而一种基于适应的替代模型仍在伺机而动。适应模型一直被忽视,因为它的建立方式不切实际且过于简单。在此,我们展示了包含现代版适应模型的听觉皮层模拟。这些模拟表明,局部作用的短期突触抑制既导致了由于刺激重复引起的适应,也导致了MMN反应。即使在排除适应作为MMN解释的情况下(例如在刺激遗漏范式和多标准控制范式中)也是如此。目前文献中缺少能以类似多方面方式证明预测编码可行性的模拟模型,本文根据当前结果讨论了其原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/417c/8640521/c89c36faede8/fnhum-15-721574-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验