Suppr超能文献

基于图卷积神经网络的空间增强模式用于癫痫脑电识别。

Spatial Enhanced Pattern Through Graph Convolutional Neural Network for Epileptic EEG Identification.

机构信息

School of Intelligence Engineering, Shandong Management University, Jinan 250357, P. R. China.

School of Electrical Engineering and Automation, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, P. R. China.

出版信息

Int J Neural Syst. 2022 Sep;32(9):2250033. doi: 10.1142/S0129065722500332. Epub 2022 Jun 17.

Abstract

Feature extraction is an essential procedure in the detection and recognition of epilepsy, especially for clinical applications. As a type of multichannel signal, the association between all of the channels in EEG samples can be further utilized. To implement the classification of epileptic seizures from the nonseizures in EEG samples, one graph convolutional neural network (GCNN)-based framework is proposed for capturing the spatial enhanced pattern of multichannel signals to characterize the behavior of EEG activity, which is capable of visualizing the salient regions in each sequence of EEG samples. Meanwhile, the presented GCNN could be exploited to discriminate normal, ictal and interictal EEGs as a novel classifier. To evaluate the proposed approach, comparison experiments were conducted between state-of-the-art techniques and ours. From the experimental results, we found that for ictal and interictal EEG signal discrimination, the presented approach can achieve a sensitivity of 98.33%, specificity of 99.19% and accuracy of 98.38%.

摘要

特征提取是癫痫检测和识别的一个基本步骤,特别是对于临床应用。作为一种多通道信号,脑电图样本中所有通道之间的关联可以进一步利用。为了从脑电图样本中非痫性发作中实现癫痫发作的分类,提出了一种基于图卷积神经网络(GCNN)的框架,用于捕获多通道信号的空间增强模式,以描述脑电图活动的行为,能够可视化每个脑电图样本序列中的显著区域。同时,所提出的 GCNN 可以作为一种新的分类器来区分正常、痫性和非痫性脑电图。为了评估所提出的方法,我们在最先进的技术和我们的方法之间进行了对比实验。从实验结果中,我们发现对于痫性和非痫性脑电图信号的区分,所提出的方法可以达到 98.33%的灵敏度、99.19%的特异性和 98.38%的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验