Suppr超能文献

前列腺癌预测模型的诊断准确性:一项系统评价与荟萃分析

Diagnostic Accuracy of Predictive Models in Prostate Cancer: A Systematic Review and Meta-Analysis.

作者信息

Saatchi Mohammad, Khatami Fatemeh, Mashhadi Rahil, Mirzaei Akram, Zareian Leila, Ahadi Zeinab, Aghamir Seyed Mohammad Kazem

机构信息

Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran.

Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Prostate Cancer. 2022 Jun 8;2022:1742789. doi: 10.1155/2022/1742789. eCollection 2022.

Abstract

AIM

Accurate diagnosis of prostate cancer (PCa) has a fundamental role in clinical and patient care. Recent advances in diagnostic testing and marker lead to standardized interpretation and increased prescription by clinicians to improve the detection of clinically significant PCa and select patients who strictly require targeted biopsies.

METHODS

In this study, we present a systematic review of the overall diagnostic accuracy of each testing panel regarding the panel details. In this meta-analysis, using a structured search, Web of Science and PubMed databases were searched up to 23 September 2019 with no restrictions and filters. The study's outcome was the AUC and 95% confidence interval of prediction models. This index was reported as an overall and based on the WHO region and models with/without MRI.

RESULTS

The thirteen final articles included 25,691 people. The overall AUC and 95% CI in thirteen studies were 0.78 and 95% CI: 0.73-0.82. The weighted average AUC in the countries of the Americas region was 0.73 (95% CI: 0.70-0.75), and in European countries, it was 0.80 (95% CI: 0.72-0.88). In four studies with MRI, the average weighted AUC was 0.88 (95% CI: 0.86-0.90), while in other articles where MRI was not a parameter in the diagnostic model, the mean AUC was 0.73 (95% CI: 0.70-0.76).

CONCLUSIONS

The present study's findings showed that MRI significantly improved the detection accuracy of prostate cancer and had the highest discrimination to distinguish candidates for biopsy.

摘要

目的

前列腺癌(PCa)的准确诊断在临床和患者护理中具有重要作用。诊断检测和标志物的最新进展促使临床医生进行标准化解读并增加相关检测的应用,以提高临床显著性PCa的检出率,并筛选出严格需要进行靶向活检的患者。

方法

在本研究中,我们针对各检测组的详细信息对其总体诊断准确性进行了系统评价。在这项荟萃分析中,我们使用结构化检索方式,对科学网和PubMed数据库进行了检索,检索截止至2019年9月23日,无任何限制和筛选条件。研究结果为预测模型的AUC及95%置信区间。该指标作为总体指标进行报告,并根据世界卫生组织区域以及有无MRI的模型分别报告。

结果

最终纳入的13篇文章共涉及25,691人。13项研究的总体AUC及95%CI为0.78,95%CI:0.73 - 0.82。美洲地区国家的加权平均AUC为0.73(95%CI:0.70 - 0.75),欧洲国家为0.80(95%CI:0.72 - 0.88)。在4项包含MRI的研究中,加权平均AUC为0.88(95%CI:0.86 - 0.90),而在其他MRI并非诊断模型参数的文章中,平均AUC为0.73(95%CI:0.70 - 0.76)。

结论

本研究结果表明,MRI显著提高了前列腺癌的检测准确性,在区分活检候选者方面具有最高的鉴别力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aca/9200600/01795fb1fc40/PC2022-1742789.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验