Suppr超能文献

利用图神经网络的迁移学习改进小分子pK预测

Improving Small Molecule pK Prediction Using Transfer Learning With Graph Neural Networks.

作者信息

Mayr Fritz, Wieder Marcus, Wieder Oliver, Langer Thierry

机构信息

Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Vienna, Vienna, Austria.

出版信息

Front Chem. 2022 May 26;10:866585. doi: 10.3389/fchem.2022.866585. eCollection 2022.

Abstract

Enumerating protonation states and calculating microstate pK values of small molecules is an important yet challenging task for lead optimization and molecular modeling. Commercial and non-commercial solutions have notable limitations such as restrictive and expensive licenses, high CPU/GPU hour requirements, or the need for expert knowledge to set up and use. We present a graph neural network model that is trained on 714,906 calculated microstate pK predictions from molecules obtained from the ChEMBL database. The model is fine-tuned on a set of 5,994 experimental pK values significantly improving its performance on two challenging test sets. Combining the graph neural network model with Dimorphite-DL, an open-source program for enumerating ionization states, we have developed the open-source Python package pkasolver, which is able to generate and enumerate protonation states and calculate pK values with high accuracy.

摘要

枚举小分子的质子化状态并计算微状态pK值是先导化合物优化和分子建模中一项重要但具有挑战性的任务。商业和非商业解决方案都有显著的局限性,如许可证限制且昂贵、对CPU/ GPU小时数要求高,或者需要专业知识来设置和使用。我们提出了一种图神经网络模型,该模型基于从ChEMBL数据库获得的分子的714,906个计算出的微状态pK预测进行训练。该模型在一组5,994个实验pK值上进行了微调,显著提高了其在两个具有挑战性的测试集上的性能。将图神经网络模型与用于枚举电离状态的开源程序Dimorphite-DL相结合,我们开发了开源Python包pkasolver,它能够生成和枚举质子化状态并高精度计算pK值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验