Suppr超能文献

基于氢气的膜生物膜反应器中从含硝酸盐废水中去除氮 氢气自养反硝化:生物膜结构、微生物群落及优化策略

Nitrogen Removal From Nitrate-Containing Wastewaters in Hydrogen-Based Membrane Biofilm Reactors Hydrogen Autotrophic Denitrification: Biofilm Structure, Microbial Community and Optimization Strategies.

作者信息

Dong Kun, Feng Xinghui, Yao Yi, Zhu Zongqiang, Lin Hua, Zhang Xuehong, Wang Dunqiu, Li Haixiang

机构信息

College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China.

The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin, China.

出版信息

Front Microbiol. 2022 Jun 2;13:924084. doi: 10.3389/fmicb.2022.924084. eCollection 2022.

Abstract

The hydrogen-based membrane biofilm reactor (MBfR) has been widely applied in nitrate removal from wastewater, while the erratic fluctuation of treatment efficiency is in consequence of unstable operation parameters. In this study, hydrogen pressure, pH, and biofilm thickness were optimized as the key controlling parameters to operate MBfR. The results of 653.31 μm in biofilm thickness, 0.05 MPa in hydrogen pressure and pH in 7.78 suggesting high-efficiency removal and the removal flux was 1.15 g·m d. 16S rRNA gene analysis revealed that , , , , and were the five most abundant bacterial genera in MBfRs after optimization. Moreover, significant increases of relative abundances from 0.36 to 9.77% suggested that optimization could effectively remove nitrogen from MBfRs. Membrane pores and surfaces exhibited varying degrees of calcification during stable operation, as evinced by Ca precipitation adhering to MBfR membrane surfaces based on scanning electron microscopy (SEM), atomic force microscopy (AFM) analyses. Scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) analyses also confirmed that the primary elemental composition of polyvinyl chloride (PVC) membrane surfaces after response surface methodology (RSM) optimization comprised Ca, O, C, P, and Fe. Further, X-ray diffraction (XRD) analyses indicated the formation of CaF(PO) geometry during the stable operation phase.

摘要

基于氢气的膜生物膜反应器(MBfR)已广泛应用于废水中硝酸盐的去除,然而处理效率的不稳定波动是由运行参数不稳定导致的。在本研究中,将氢气压力、pH值和生物膜厚度优化为操作MBfR的关键控制参数。生物膜厚度为653.31μm、氢气压力为0.05MPa且pH值为7.78时的结果表明去除效率高,去除通量为1.15g·m⁻²·d⁻¹。16S rRNA基因分析表明,优化后的MBfRs中丰度最高的五个细菌属为、、、和。此外,相对丰度从0.36%显著增加到9.77%表明优化可有效从MBfRs中去除氮。基于扫描电子显微镜(SEM)和原子力显微镜(AFM)分析,在稳定运行期间膜孔和表面呈现出不同程度的钙化,表现为Ca沉淀物附着在MBfR膜表面。扫描电子显微镜-能量色散谱仪(SEM-EDS)分析还证实,响应面法(RSM)优化后聚氯乙烯(PVC)膜表面的主要元素组成包括Ca、O、C、P和Fe。此外,X射线衍射(XRD)分析表明在稳定运行阶段形成了CaF(PO)晶体结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d66/9201494/353f0939b05e/fmicb-13-924084-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验