Suppr超能文献

开发一种基于生物标志物和风险因素的多模态模型以检测高级别前列腺癌。

Developing a Multimodal Model for Detecting Higher-Grade Prostate Cancer Using Biomarkers and Risk Factors.

机构信息

Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, India.

Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, Tamil Nadu, India.

出版信息

Biomed Res Int. 2022 Jun 10;2022:9223400. doi: 10.1155/2022/9223400. eCollection 2022.

Abstract

A technique to predict crucial clinical prostate cancer (PC) is desperately required to prevent diagnostic errors and overdiagnosis. To create a multimodal model that incorporates long-established messenger RNA (mRNA) indicators and conventional risk variables for identifying individuals with severe PC on prostatic biopsies. Urinary has gathered for mRNA analysis following a DRE and before a prostatic examination in two prospective multimodal investigations. A first group ( = 489) generated the multimodal risk score, which was then medically verified in a second group ( = 283). The reverse transcription qualitative polymerase chain reaction determined the mRNA phase. Logistic regression was applied to predict risk in patients and incorporate health risks. The area under the curve (AUC) was used to compare models, and clinical efficacy was assessed by using a DCA. The amounts of sixth homeobox clustering and first distal-less homeobox mRNA have been strongly predictive of high-grade PC detection. In the control subjects, the multimodal method achieved a total AUC of 0.90, with the most important aspects being the messenger riboneuclic acid features' PSA densities and previous cancer-negative tests as a nonsignificant design ability to contribute to PSA, aging, and background. An AUC of 0.86 was observed for one more model that added DRE as an extra risk component. Two methods were satisfactorily verified without any significant changes within the area under the curve in the validation group. DCA showed a massive net advantage and the highest decrease in inappropriate costs.

摘要

迫切需要一种预测关键临床前列腺癌 (PC) 的技术,以防止诊断错误和过度诊断。建立一个多模态模型,将长期确立的信使 RNA (mRNA) 指标和传统风险变量结合起来,以识别前列腺活检中严重 PC 的个体。在两个前瞻性多模态研究中,在 DRE 后和前列腺检查前收集了用于 mRNA 分析的尿液。第一个组(= 489)生成了多模态风险评分,然后在第二个组(= 283)中进行了医学验证。反转录定性聚合酶链反应确定了 mRNA 阶段。应用逻辑回归预测患者风险并纳入健康风险。使用 DCA 比较模型的曲线下面积 (AUC),并评估临床疗效。第六同源盒聚类和第一远距同源盒 mRNA 的含量强烈预测了高级别 PC 的检测。在对照组中,多模态方法的总 AUC 为 0.90,最重要的方面是信使核糖核酸特征的 PSA 密度和以前的癌症阴性测试,因为 PSA、衰老和背景没有显著的设计能力。添加 DRE 作为额外风险因素的另一个模型的 AUC 为 0.86。两种方法在验证组中没有明显变化,曲线下面积的验证结果令人满意。DCA 显示出巨大的净优势和最高的不适当成本降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b56e/9205705/3fcf75669da1/BMRI2022-9223400.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验