Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
Department of Physics, University of Fribourg, Chemin du Musée 3, 1700, Fribourg, Switzerland.
Angew Chem Int Ed Engl. 2022 Aug 22;61(34):e202206562. doi: 10.1002/anie.202206562. Epub 2022 Jul 13.
To unlock the widespread use of block copolymers as photonic pigments, there is an urgent need to consider their environmental impact (cf. microplastic pollution). Here we show how an inverse photonic glass architecture can enable the use of biocompatible bottlebrush block copolymers (BBCPs), which otherwise lack the refractive index contrast needed for a strong photonic response. A library of photonic pigments is produced from poly(norbornene-graft-polycaprolactone)-block-poly(norbornene-graft-polyethylene glycol), with the color tuned via either the BBCP molecular weight or the processing temperature upon microparticle fabrication. The structure-optic relationship between the 3D porous morphology of the microparticles and their complex optical response is revealed by both an analytical scattering model and 3D finite-difference time domain (FDTD) simulations. Combined, this allows for strategies to enhance the color purity to be proposed and realized with our biocompatible BBCP system.
为了广泛应用嵌段共聚物作为光子颜料,我们迫切需要考虑其环境影响(参见微塑料污染)。在这里,我们展示了如何通过反向光子玻璃结构来实现生物相容性刷型嵌段共聚物(BBCP)的应用,否则它们缺乏强光子响应所需的折射率对比。通过聚降冰片烯-接枝-聚己内酯-嵌-聚降冰片烯-接枝-聚乙二醇制备了一系列光子颜料,通过控制 BBCP 的分子量或微粒子制备时的加工温度来调节颜色。通过解析散射模型和三维有限差分时域(FDTD)模拟揭示了微粒子的 3D 多孔形态与其复杂光学响应之间的结构-光学关系。结合这些方法,可以提出并实现我们的生物相容性 BBCP 系统来提高颜色纯度的策略。