Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.
Department of Physics, Harvard University, Cambridge, MA 02138.
Proc Natl Acad Sci U S A. 2021 Jan 26;118(4). doi: 10.1073/pnas.2015551118.
Disordered nanostructures with correlations on the scale of visible wavelengths can show angle-independent structural colors. These materials could replace dyes in some applications because the color is tunable and resists photobleaching. However, designing nanostructures with a prescribed color is difficult, especially when the application-cosmetics or displays, for example-requires specific component materials. A general approach to solving this constrained design problem is modeling and optimization: Using a model that predicts the color of a given system, one optimizes the model parameters under constraints to achieve a target color. For this approach to work, the model must make accurate predictions, which is challenging because disordered nanostructures have multiple scattering. To address this challenge, we develop a Monte Carlo model that simulates multiple scattering of light in disordered arrangements of spherical particles or voids. The model produces quantitative agreement with measurements when we account for roughness on the surface of the film, particle polydispersity, and wavelength-dependent absorption in the components. Unlike discrete numerical simulations, our model is parameterized in terms of experimental variables, simplifying the connection between simulation and fabrication. To demonstrate this approach, we reproduce the color of the male mountain bluebird () in an experimental system, using prescribed components and a microstructure that is easy to fabricate. Finally, we use the model to find the limits of angle-independent structural colors for a given system. These results enable an engineering design approach to structural color for many different applications.
具有可见波长尺度相关性的无序纳米结构可以显示角度无关的结构色。这些材料可以在某些应用中替代染料,因为颜色可调且不易褪色。然而,设计具有规定颜色的纳米结构是困难的,特别是当应用涉及化妆品或显示器时,需要特定的组件材料。解决这个受约束设计问题的一般方法是建模和优化:使用预测给定系统颜色的模型,在约束条件下优化模型参数以实现目标颜色。为了使这种方法奏效,模型必须做出准确的预测,这是具有挑战性的,因为无序纳米结构具有多次散射。为了解决这个挑战,我们开发了一种蒙特卡罗模型,用于模拟无序排列的球形颗粒或空洞中光的多次散射。当我们考虑薄膜表面粗糙度、颗粒多分散性和组件中波长相关的吸收时,该模型与测量结果产生了定量的一致性。与离散数值模拟不同,我们的模型是根据实验变量参数化的,简化了模拟和制造之间的联系。为了展示这种方法,我们在实验系统中重现了雄性山蓝鸟的颜色,使用规定的组件和易于制造的微结构。最后,我们使用该模型找到了给定系统角度无关结构颜色的极限。这些结果为许多不同的应用提供了结构颜色的工程设计方法。