Suppr超能文献

超分辨量子鬼成像

Super-resolved quantum ghost imaging.

作者信息

Moodley Chané, Forbes Andrew

机构信息

School of Physics, University of the Witwatersrand, Johannesburg, 2000, South Africa.

出版信息

Sci Rep. 2022 Jun 20;12(1):10346. doi: 10.1038/s41598-022-14648-2.

Abstract

Quantum ghost imaging offers many advantages over classical imaging, including low photon fluxes and non-degenerate object and image wavelengths for imaging light sensitive structures, but suffers from slow image reconstruction speeds. Image reconstruction times depend on the resolution of the required image which scale quadratically with the image resolution. Here, we propose a super-resolved imaging approach based on neural networks where we reconstruct a low resolution image, which we denoise and super-resolve to a high resolution image. To test the approach, we implemented both a generative adversarial network as well as a super-resolving autoencoder in conjunction with an experimental quantum ghost imaging setup, demonstrating its efficacy across a range of object and imaging projective mask types. We achieved super-resolving enhancement of [Formula: see text] the measured resolution with a fidelity close to 90[Formula: see text] at an acquisition time of N[Formula: see text] measurements, required for a complete N [Formula: see text] N pixel image solution. This significant resolution enhancement is a step closer to a common ghost imaging goal, to reconstruct images with the highest resolution and the shortest possible acquisition time.

摘要

量子鬼成像相对于传统成像具有许多优势,包括低光子通量以及用于对光敏感结构成像的非简并物体和图像波长,但存在图像重建速度慢的问题。图像重建时间取决于所需图像的分辨率,该分辨率与图像分辨率呈二次方比例关系。在此,我们提出一种基于神经网络的超分辨成像方法,即先重建低分辨率图像,然后对其进行去噪并超分辨为高分辨率图像。为测试该方法,我们结合实验性量子鬼成像装置实现了生成对抗网络以及超分辨自动编码器,证明了其在一系列物体和成像投影掩模类型中的有效性。在获取完整的N×N像素图像解所需的N次测量的采集时间下,我们实现了超分辨增强,将测量分辨率提高了[公式:见正文],保真度接近90%[公式:见正文]。这种显著的分辨率增强朝着一个常见的鬼成像目标又迈进了一步,即使用尽可能短的采集时间重建具有最高分辨率的图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/9209480/ed7becb867ae/41598_2022_14648_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验