Scattarella Francesco, Diacono Domenico, Monaco Alfonso, Amoroso Nicola, Bellantuono Loredana, Massaro Gianlorenzo, Pepe Francesco V, Tangaro Sabina, Bellotti Roberto, D'Angelo Milena
Dipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy.
Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, 70125, Bari, Italy.
Sci Rep. 2023 Nov 10;13(1):19645. doi: 10.1038/s41598-023-46765-x.
Correlation Plenoptic Imaging (CPI) is a novel volumetric imaging technique that uses two sensors and the spatio-temporal correlations of light to detect both the spatial distribution and the direction of light. This novel approach to plenoptic imaging enables refocusing and 3D imaging with significant enhancement of both resolution and depth of field. However, CPI is generally slower than conventional approaches due to the need to acquire sufficient statistics for measuring correlations with an acceptable signal-to-noise ratio (SNR). We address this issue by implementing a Deep Learning application to improve image quality with undersampled frame statistics. We employ a set of experimental images reconstructed by a standard CPI architecture, at three different sampling ratios, and use it to feed a CNN model pre-trained through the transfer learning paradigm U-Net architecture with VGG-19 net for the encoding part. We find that our model reaches a Structural Similarity (SSIM) index value close to 1 both for the test sample (SSIM = [Formula: see text]) and in 5-fold cross validation (SSIM = [Formula: see text]); the results are also shown to outperform classic denoising methods, in particular for images with lower SNR. The proposed work represents the first application of Artificial Intelligence in the field of CPI and demonstrates its high potential: speeding-up the acquisition by a factor 20 over the fastest CPI so far demonstrated, enabling recording potentially 200 volumetric images per second. The presented results open the way to scanning-free real-time volumetric imaging at video rate, which is expected to achieve a substantial influence in various applications scenarios, from monitoring neuronal activity to machine vision and security.
相关全光成像(CPI)是一种新颖的体积成像技术,它使用两个传感器以及光的时空相关性来检测光的空间分布和方向。这种全光成像的新方法能够实现重新聚焦和3D成像,同时显著提高分辨率和景深。然而,由于需要获取足够的统计数据以在可接受的信噪比(SNR)下测量相关性,CPI通常比传统方法慢。我们通过实施深度学习应用来解决这个问题,以利用欠采样帧统计提高图像质量。我们采用由标准CPI架构在三种不同采样率下重建的一组实验图像,并将其输入到通过迁移学习范式预训练的CNN模型中,该模型的编码部分采用VGG - 19网络的U - Net架构。我们发现,对于测试样本(结构相似性指数(SSIM) = [公式:见原文])以及在5折交叉验证中(SSIM = [公式:见原文]),我们的模型都达到了接近1的SSIM指数值;结果还表明,该模型优于经典去噪方法,特别是对于信噪比更低的图像。所提出的工作代表了人工智能在CPI领域的首次应用,并展示了其巨大潜力:比目前最快的CPI加速采集20倍,有可能实现每秒记录200个体积图像。所呈现的结果为以视频速率进行无扫描实时体积成像开辟了道路,预计这将在从监测神经元活动到机器视觉和安全等各种应用场景中产生重大影响。