Suppr超能文献

通过深度学习提高实时傅里叶单像素成像的成像质量。

Improving Imaging Quality of Real-time Fourier Single-pixel Imaging via Deep Learning.

机构信息

Key Laboratory of Biomimetic Robots and Systems, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Sensors (Basel). 2019 Sep 27;19(19):4190. doi: 10.3390/s19194190.

Abstract

Fourier single pixel imaging (FSPI) is well known for reconstructing high quality images but only at the cost of long imaging time. For real-time applications, FSPI relies on under-sampled reconstructions, failing to provide high quality images. In order to improve imaging quality of real-time FSPI, a fast image reconstruction framework based on deep learning (DL) is proposed. More specifically, a deep convolutional autoencoder network with symmetric skip connection architecture for real time 96 × 96 imaging at very low sampling rates (5-8%) is employed. The network is trained on a large image set and is able to reconstruct diverse images unseen during training. The promising experimental results show that the proposed FSPI coupled with DL (termed DL-FSPI) outperforms conventional FSPI in terms of image quality at very low sampling rates.

摘要

傅里叶单像素成像(FSPI)以重建高质量图像而闻名,但这是以较长的成像时间为代价的。对于实时应用,FSPI 依赖于欠采样重建,无法提供高质量的图像。为了提高实时 FSPI 的成像质量,提出了一种基于深度学习(DL)的快速图像重建框架。更具体地说,使用了具有对称跳过连接结构的深度卷积自动编码器网络,用于在非常低的采样率(5-8%)下实时进行 96×96 成像。该网络在一个大型图像集中进行训练,能够重建训练过程中未见过的各种图像。有前景的实验结果表明,所提出的与 DL 结合的 FSPI(称为 DL-FSPI)在非常低的采样率下的图像质量方面优于传统的 FSPI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2613/6806619/770ff3dc3bc4/sensors-19-04190-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验