Kharintsev Sergey S, Noskov Aleksey I, Battalova Elina I, Katrivas Liat, Kotlyar Alexander B, Merham Jovany G, Potma Eric O, Apkarian Vartkess A, Fishman Dmitry A
Department of Optics and Nanophotonics, Institute of Physics, Kazan Federal University, Kazan 420008, Russia.
George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
ACS Nano. 2024 Oct 1;18(39):26532-26540. doi: 10.1021/acsnano.4c02656. Epub 2024 Aug 22.
Photons do not carry sufficient momentum to induce indirect optical transitions in semiconducting materials, such as silicon, necessitating the assistance of lattice phonons to conserve momentum. Compared to direct bandgap semiconductors, this renders silicon a less attractive material for a wide variety of optoelectronic applications. In this work, we introduce an alternative strategy to fulfill the momentum-matching requirement in indirect optical transitions. We demonstrate that when confined to scales below ∼3 nm, photons acquire sufficient momentum to allow electronic transitions at the band edge of Si without the assistance of a phonon. Confined photons allow simultaneous energy and momentum conservation in two-body photon-electron scattering; in effect, converting silicon into a direct bandgap semiconductor. We show that this less-explored concept of light-matter interaction leads to a marked increase in the absorptivity of Si from the UV to the near-IR. The strategy provides opportunities for more efficient use of indirect semiconductors in photovoltaics, energy conversion, light detection, and emission.
光子不具备足够的动量来诱导半导体材料(如硅)中的间接光学跃迁,因此需要晶格声子的协助来守恒动量。与直接带隙半导体相比,这使得硅在各种光电子应用中成为吸引力较小的材料。在这项工作中,我们引入了一种替代策略来满足间接光学跃迁中的动量匹配要求。我们证明,当限制在约3纳米以下的尺度时,光子获得足够的动量,从而在没有声子协助的情况下允许在硅的带边进行电子跃迁。受限光子在双体光子-电子散射中允许同时守恒能量和动量;实际上,将硅转变为直接带隙半导体。我们表明,这种较少被探索的光-物质相互作用概念导致硅从紫外到近红外的吸收率显著增加。该策略为在光伏、能量转换、光检测和发射中更有效地使用间接半导体提供了机会。