Suppr超能文献

利用计算机辅助设计技术对 PCL 微球进行图案化处理,构建具有增强强度和新生血管组织整合功能的模块化支架。

Computer-aided patterning of PCL microspheres to build modular scaffolds featuring improved strength and neovascularized tissue integration.

机构信息

Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci, 53, Naples 80125, Italy.

Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, Naples, 80137, Italy.

出版信息

Biofabrication. 2022 Jul 6;14(4). doi: 10.1088/1758-5090/ac7ad8.

Abstract

In the past decade, modular scaffolds prepared by assembling biocompatible and biodegradable building blocks (e.g. microspheres) have found promising applications in tissue engineering (TE) towards the repair/regeneration of damaged and impaired tissues. Nevertheless, to date this approach has failed to be transferred to the clinic due to technological limitations regarding microspheres patterning, a crucial issue for the control of scaffold strength, vascularization and integration. In this work, we propose a robust and reliable approach to address this issue through the fabrication of polycaprolactone (PCL) microsphere-based scaffolds with in-silico designed microarchitectures and high compression moduli. The scaffold fabrication technique consists of four main steps, starting with the manufacture of uniform PCL microspheres by fluidic emulsion technique. In the second step, patterned polydimethylsiloxane (PDMS) moulds were prepared by soft lithography. Then, layers of 500m PCL microspheres with geometrically inspired patterns were obtained by casting the microspheres onto PDMS moulds followed by their thermal sintering. Finally, three-dimensional porous scaffolds were built by the alignment, stacking and sintering of multiple (up to six) layers. The so prepared scaffolds showed excellent morphological and microstructural fidelity with respect to the in-silico models, and mechanical compression properties suitable for load bearing TE applications. Designed porosity and pore size features enabledhuman endothelial cells adhesion and growth as well as tissue integration and blood vessels invasion. Our results highlighted the strong impact of spatial patterning of microspheres on modular scaffolds response, and pay the way about the possibility to fabricate in silico-designed structures featuring biomimetic composition and architectures for specific TE purposes.

摘要

在过去的十年中,通过组装生物相容性和可生物降解的构建块(例如微球)制备的模块化支架在组织工程(TE)中得到了广泛的应用,以修复/再生受损和受损的组织。然而,迄今为止,由于微球图案化方面的技术限制,这种方法尚未在临床上得到应用,而微球图案化对于控制支架强度、血管生成和整合至关重要。在这项工作中,我们提出了一种强大而可靠的方法来解决这个问题,即通过制造具有计算机设计的微观结构和高压缩模量的基于聚己内酯(PCL)微球的支架来解决这个问题。支架制造技术由四个主要步骤组成,首先通过流体乳液技术制造均匀的 PCL 微球。第二步,通过软光刻制备图案化的聚二甲基硅氧烷(PDMS)模具。然后,通过将微球浇铸到 PDMS 模具上并进行热烧结,获得具有几何启发图案的 500μm PCL 微球层。最后,通过对齐、堆叠和烧结多个(多达六个)层来构建三维多孔支架。所制备的支架在形态和微观结构方面具有出色的保真度,与计算机模型相对应,并且具有适合承重 TE 应用的机械压缩性能。设计的孔隙率和孔径特征使人类内皮细胞能够黏附和生长,以及组织整合和血管侵入。我们的结果强调了微球空间图案化对模块化支架响应的强烈影响,并为制造具有仿生组成和结构的计算机设计结构以满足特定 TE 目的铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验