Suppr超能文献

一种基于新型 GAN 的煎炸油劣化预测回归模型。

A novel GAN-based regression model for predicting frying oil deterioration.

机构信息

Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University, Wuhan, China.

Jiaxing Future Food Research Institute, Jiaxing, China.

出版信息

Sci Rep. 2022 Jun 21;12(1):10424. doi: 10.1038/s41598-022-13762-5.

Abstract

Frying is a common food processing method because fried food is popular with consumers for its attractive colour and crisp taste. What's concerning is that the complex physical and chemical reactions occurring during deep frying are harmful to the well-being of people. For this reason, researchers proposed various detecting methods to assess frying oil deterioration. Some studies design sensor probe, others utilize spectroscopic related methods. However, these methods all need the participating of professionals and expensive instruments. Some of the methods can only function on a fixed temperature. To fix the defects of the above models, in this study, we make use of recent advances in machine learning, specifically generative adversarial networks (GAN). We propose a GAN-based regression model to predict frying oil deterioration. First, we conduct deep frying experiments and record the values of indexes we choose under different temperature and frying time. After collecting the data, we build a GAN-based regression model and train it on the dataset. Finally, we test our model on the test set and analyze the experimental results. Our results suggest that the proposed model can predict frying oil deterioration without experiments. Our model can be applied to other regression problems in various research areas, including price forecasting, trend analysis and so on.

摘要

油炸是一种常见的食品加工方法,因为油炸食品因其诱人的颜色和松脆的口感而受到消费者的欢迎。令人担忧的是,在油炸过程中发生的复杂物理和化学反应对人们的健康有害。出于这个原因,研究人员提出了各种检测方法来评估煎炸油的劣化。一些研究设计了传感器探头,另一些则利用光谱相关方法。然而,这些方法都需要专业人员和昂贵的仪器的参与。有些方法只能在固定的温度下工作。为了解决上述模型的缺陷,在本研究中,我们利用机器学习的最新进展,特别是生成对抗网络(GAN)。我们提出了一种基于 GAN 的回归模型来预测煎炸油的劣化。首先,我们进行了油炸实验,并在不同的温度和油炸时间下记录我们选择的指标值。在收集数据后,我们构建了一个基于 GAN 的回归模型,并在数据集上对其进行训练。最后,我们在测试集上测试我们的模型,并分析实验结果。我们的结果表明,所提出的模型可以在没有实验的情况下预测煎炸油的劣化。我们的模型可以应用于其他回归问题,包括价格预测、趋势分析等。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4269/9213417/990a6f4c8031/41598_2022_13762_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验