Li Wei, Liang Zhixuan, Ma Ping, Wang Ruobei, Cui Xiaohui, Chen Ping
IEEE Trans Cybern. 2022 Oct;52(10):10407-10419. doi: 10.1109/TCYB.2021.3062396. Epub 2022 Sep 19.
Data usually resides on a manifold, and the minimal dimension of such a manifold is called its intrinsic dimension. This fundamental data property is not considered in the generative adversarial network (GAN) model along with its its variants; such that original data and generated data often hold different intrinsic dimensions. The different intrinsic dimensions of both generated and original data may cause generated data distribution to not match original data distribution completely, and it certainly will hurt the quality of generated data. In this study, we first show that GAN is often unable to generate simulation data, holding the same intrinsic dimension as the original data with both theoretical analysis and experimental illustration. Next, we propose a new model, called Hausdorff GAN, which removes the issue of different intrinsic dimensions and introduces the Hausdorff metric into GAN training to generate higher quality data. This provides new insights into the success of Hausdorff GAN. Specifically, we utilize a mapping function to map both original and generated data into the same manifold. We then calculate the Hausdorff distance to measure the difference between the mapped original data and the mapped generated data, toward pushing generated data to the side of original data. Finally, we conduct extensive experiments (using MNIST, CIFAR10, and CelebA datasets) to demonstrate the significant performance improvement of the Hausdorff GAN in achieving the largest Inception Score and the smallest Frechet inception distance (FID) score as well as producing diverse generated data at different resolutions.
数据通常存在于一个流形上,这样一个流形的最小维度被称为其内在维度。生成对抗网络(GAN)模型及其变体没有考虑这个基本的数据属性;因此原始数据和生成的数据通常具有不同的内在维度。生成数据和原始数据的不同内在维度可能会导致生成数据的分布不能完全匹配原始数据的分布,这肯定会损害生成数据的质量。在本研究中,我们首先通过理论分析和实验说明表明,GAN通常无法生成与原始数据具有相同内在维度的模拟数据。接下来,我们提出了一种新的模型,称为豪斯多夫GAN,它消除了不同内在维度的问题,并将豪斯多夫度量引入GAN训练以生成更高质量的数据。这为豪斯多夫GAN的成功提供了新的见解。具体来说,我们利用一个映射函数将原始数据和生成的数据都映射到同一个流形上。然后我们计算豪斯多夫距离来测量映射后的原始数据和映射后的生成数据之间的差异,以便将生成数据推向原始数据一侧。最后,我们进行了广泛的实验(使用MNIST、CIFAR10和CelebA数据集),以证明豪斯多夫GAN在实现最大的Inception分数和最小的弗雷歇初始距离(FID)分数以及在不同分辨率下生成多样化的生成数据方面有显著的性能提升。