Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029,
Eur Cell Mater. 2022 Jun 22;43:277-292. doi: 10.22203/eCM.v043a19.
Biochemical and biophysical factors need consideration when modelling in vivo cellular behaviour using in vitro cell culture systems. One underappreciated factor is the high concentration of macromolecules present in vivo, which is typically not simulated under standard cell culture conditions. This disparity is especially relevant when studying biochemical processes that govern extracellular matrix (ECM) deposition, which may be altered due to dilution of secreted macromolecules by the relatively large volumes of culture medium required for cell maintenance in vitro. Macromolecular crowding (MMC) utilises the addition of inert macromolecules to cell culture medium to mimic such high concentration environments found in vivo. The present study induced MMC using the sucrose polymer Ficoll and examined whether fibrillin-1 deposition by human lung fibroblasts could be augmented. Fibrillin-1 forms extracellular microfibrils, which are versatile scaffolds required for elastic fibre formation, deposition of other ECM proteins and growth factor regulation. Pathogenic variants in the fibrillin-1 gene (FBN1) cause Marfan syndrome, where ECM deposition of fibrillin-1 can be compromised. Using immunocytochemistry, significantly enhanced fibrillin-1 deposition was observed when lung fibroblasts were cultured under MMC conditions. MMC also augmented fibrillin-1 deposition in Marfan syndrome patient-derived skin fibroblasts in a cell line- and likely FBN1 variant-specific manner. The ability of MMC to increase fibrillin-1 deposition suggested potential applications for tissue-engineering approaches, e.g. to generate tendon or vascular tissues, where fibrillin-1 microfibrils and elastic fibres are key determinants of their biomechanical properties. Moreover, it suggested the potency of MMC to better mimic in vivo ECM environments in cell culture studies.
在使用体外细胞培养系统模拟体内细胞行为时,需要考虑生化和生物物理因素。一个被低估的因素是体内存在的大分子的高浓度,这在标准细胞培养条件下通常无法模拟。当研究控制细胞外基质(ECM)沉积的生化过程时,这种差异尤其相关,因为细胞外基质的分泌大分子由于体外细胞维持所需的相对大量的培养基而被稀释,这可能会改变。大分子拥挤(MMC)利用向细胞培养基中添加惰性大分子来模拟体内发现的这种高浓度环境。本研究使用蔗糖聚合物 Ficoll 诱导 MMC,并检查人肺成纤维细胞的纤维连接蛋白-1(fibrillin-1)沉积是否可以增强。纤维连接蛋白-1 形成细胞外微纤维,是形成弹性纤维、沉积其他 ECM 蛋白和生长因子调节所需的多功能支架。纤维连接蛋白-1 基因(FBN1)中的致病变体导致马凡综合征,其中纤维连接蛋白-1 的 ECM 沉积可能受损。通过免疫细胞化学观察到,当肺成纤维细胞在 MMC 条件下培养时,纤维连接蛋白-1 的沉积明显增强。MMC 还以细胞系和可能的 FBN1 变体特异性方式增强了马凡综合征患者来源的皮肤成纤维细胞中纤维连接蛋白-1 的沉积。MMC 增加纤维连接蛋白-1 沉积的能力表明其在组织工程方法中的潜在应用,例如生成肌腱或血管组织,其中纤维连接蛋白-1 微纤维和弹性纤维是其生物力学特性的关键决定因素。此外,这表明 MMC 有潜力在细胞培养研究中更好地模拟体内 ECM 环境。