Suppr超能文献

半监督经验贝叶斯组正则化因子回归。

Semi-supervised empirical Bayes group-regularized factor regression.

机构信息

Department of Epidemiology & Data Science, Amsterdam UMC, Amsterdam, The Netherlands.

Mathematical Institute, Leiden University, Leiden, The Netherlands.

出版信息

Biom J. 2022 Oct;64(7):1289-1306. doi: 10.1002/bimj.202100105. Epub 2022 Jun 22.

Abstract

The features in a high-dimensional biomedical prediction problem are often well described by low-dimensional latent variables (or factors). We use this to include unlabeled features and additional information on the features when building a prediction model. Such additional feature information is often available in biomedical applications. Examples are annotation of genes, metabolites, or p-values from a previous study. We employ a Bayesian factor regression model that jointly models the features and the outcome using Gaussian latent variables. We fit the model using a computationally efficient variational Bayes method, which scales to high dimensions. We use the extra information to set up a prior model for the features in terms of hyperparameters, which are then estimated through empirical Bayes. The method is demonstrated in simulations and two applications. One application considers influenza vaccine efficacy prediction based on microarray data. The second application predicts oral cancer metastasis from RNAseq data.

摘要

在高维生物医学预测问题中,特征通常可以很好地用低维潜在变量(或因子)来描述。我们利用这一点,在构建预测模型时包括未标记的特征和特征的附加信息。这种附加的特征信息在生物医学应用中通常是可用的。例如,基因、代谢物的注释,或来自先前研究的 p 值。我们采用贝叶斯因子回归模型,该模型使用高斯潜在变量联合对特征和结果进行建模。我们使用计算效率高的变分贝叶斯方法来拟合模型,该方法可以扩展到高维。我们利用这些额外的信息,根据超参数为特征建立先验模型,然后通过经验贝叶斯进行估计。该方法在模拟和两个应用中进行了演示。一个应用考虑基于微阵列数据的流感疫苗疗效预测。第二个应用从 RNAseq 数据预测口腔癌转移。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d2/9796498/673dd8ef0993/BIMJ-64-1289-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验