Suppr超能文献

用于交互作用推断的贝叶斯因子分析

Bayesian Factor Analysis for Inference on Interactions.

作者信息

Ferrari Federico, Dunson David B

机构信息

Department of Statistical Science, Duke University.

出版信息

J Am Stat Assoc. 2021;116(535):1521-1532. doi: 10.1080/01621459.2020.1745813. Epub 2020 Apr 20.

Abstract

This article is motivated by the problem of inference on interactions among chemical exposures impacting human health outcomes. Chemicals often co-occur in the environment or in synthetic mixtures and as a result exposure levels can be highly correlated. We propose a latent factor joint model, which includes shared factors in both the predictor and response components while assuming conditional independence. By including a quadratic regression in the latent variables in the response component, we induce flexible dimension reduction in characterizing main effects and interactions. We propose a Bayesian approach to inference under this Factor analysis for INteractions (FIN) framework. Through appropriate modifications of the factor modeling structure, FIN can accommodate higher order interactions. We evaluate the performance using a simulation study and data from the National Health and Nutrition Examination Survey (NHANES). Code is available on GitHub.

摘要

本文受化学暴露对人类健康结果影响的相互作用推断问题的启发。化学物质经常在环境中或合成混合物中共存,因此暴露水平可能高度相关。我们提出了一种潜在因素联合模型,该模型在预测变量和响应变量组件中都包含共享因素,同时假设条件独立性。通过在响应变量组件的潜在变量中纳入二次回归,我们在表征主效应和相互作用时引入了灵活的降维方法。我们在这个交互作用因子分析(FIN)框架下提出了一种贝叶斯推断方法。通过对因子建模结构进行适当修改,FIN可以适应高阶相互作用。我们使用模拟研究和来自国家健康与营养检查调查(NHANES)的数据评估了该模型的性能。代码可在GitHub上获取。

相似文献

1
Bayesian Factor Analysis for Inference on Interactions.用于交互作用推断的贝叶斯因子分析
J Am Stat Assoc. 2021;116(535):1521-1532. doi: 10.1080/01621459.2020.1745813. Epub 2020 Apr 20.

引用本文的文献

8

本文引用的文献

2
Bayesian cumulative shrinkage for infinite factorizations.用于无限分解的贝叶斯累积收缩法。
Biometrika. 2020 Sep;107(3):745-752. doi: 10.1093/biomet/asaa008. Epub 2020 May 27.
4
NON-LOCAL PRIORS FOR HIGH-DIMENSIONAL ESTIMATION.用于高维估计的非局部先验
J Am Stat Assoc. 2017;112(517):254-265. doi: 10.1080/01621459.2015.1130634. Epub 2017 May 3.
7
Convex Modeling of Interactions with Strong Heredity.具有强遗传性的相互作用的凸模型
J Comput Graph Stat. 2016;25(4):981-1004. doi: 10.1080/10618600.2015.1067217. Epub 2015 Aug 12.
9
Dirichlet-Laplace priors for optimal shrinkage.用于最优收缩的狄利克雷-拉普拉斯先验
J Am Stat Assoc. 2015 Dec 1;110(512):1479-1490. doi: 10.1080/01621459.2014.960967. Epub 2014 Sep 25.
10
A LASSO FOR HIERARCHICAL INTERACTIONS.用于分层交互的套索法
Ann Stat. 2013 Jun;41(3):1111-1141. doi: 10.1214/13-AOS1096.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验