Suppr超能文献

博采众长:基于高维模型预测的经验贝叶斯方法

Learning from a lot: Empirical Bayes for high-dimensional model-based prediction.

作者信息

van de Wiel Mark A, Te Beest Dennis E, Münch Magnus M

机构信息

Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute VU University Medical Center Amsterdam The Netherlands.

Department of Mathematics VU University Amsterdam The Netherlands.

出版信息

Scand Stat Theory Appl. 2019 Mar;46(1):2-25. doi: 10.1111/sjos.12335. Epub 2018 Jun 1.

Abstract

Empirical Bayes is a versatile approach to "learn from a lot" in two ways: first, from a large number of variables and, second, from a potentially large amount of prior information, for example, stored in public repositories. We review applications of a variety of empirical Bayes methods to several well-known model-based prediction methods, including penalized regression, linear discriminant analysis, and Bayesian models with sparse or dense priors. We discuss "formal" empirical Bayes methods that maximize the marginal likelihood but also more informal approaches based on other data summaries. We contrast empirical Bayes to cross-validation and full Bayes and discuss hybrid approaches. To study the relation between the quality of an empirical Bayes estimator and p, the number of variables, we consider a simple empirical Bayes estimator in a linear model setting. We argue that empirical Bayes is particularly useful when the prior contains multiple parameters, which model a priori information on variables termed "co-data". In particular, we present two novel examples that allow for co-data: first, a Bayesian spike-and-slab setting that facilitates inclusion of multiple co-data sources and types and, second, a hybrid empirical Bayes-full Bayes ridge regression approach for estimation of the posterior predictive interval.

摘要

经验贝叶斯是一种通用方法,可通过两种方式“大量学习”:第一,从大量变量中学习;第二,从潜在的大量先验信息中学习,例如存储在公共知识库中的信息。我们回顾了各种经验贝叶斯方法在几种著名的基于模型的预测方法中的应用,包括惩罚回归、线性判别分析以及具有稀疏或密集先验的贝叶斯模型。我们讨论了最大化边际似然的“形式化”经验贝叶斯方法,以及基于其他数据汇总的更非形式化方法。我们将经验贝叶斯与交叉验证和完全贝叶斯进行对比,并讨论混合方法。为了研究经验贝叶斯估计量的质量与变量数量(p)之间的关系,我们在一个线性模型设置中考虑一种简单的经验贝叶斯估计量。我们认为,当先验包含多个参数时,经验贝叶斯特别有用,这些参数对称为“协数据”的变量的先验信息进行建模。特别是,我们给出了两个允许使用协数据的新例子:第一,一种贝叶斯尖劈平板设置,便于纳入多个协数据源和类型;第二,一种用于估计后验预测区间的混合经验贝叶斯 - 完全贝叶斯岭回归方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5334/6472625/9e1899e165b5/SJOS-46-2-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验