Suppr超能文献

水凝胶微球的化学计量后修饰决定了神经干细胞在微孔退火颗粒支架中的命运。

Stoichiometric Post-Modification of Hydrogel Microparticles Dictates Neural Stem Cell Fate in Microporous Annealed Particle Scaffolds.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC, 27708-0281, USA.

Department of Chemical Engineering, University of Michigan, North Campus Research Complex, Building 28, 2800 Plymouth Rd, Ann Arbor, MI, 48109-2800, USA.

出版信息

Adv Mater. 2022 Aug;34(33):e2201921. doi: 10.1002/adma.202201921. Epub 2022 Jul 14.

Abstract

Microporous annealed particle (MAP) scaffolds are generated from assembled hydrogel microparticles (microgels). It has been previously demonstrated that MAP scaffold are porous, biocompatible, and recruit neural progenitor cells (NPCs) to the stroke cavity after injection into the stroke core. Here, the goal is to study NPC fate inside MAP scaffolds in vitro. To create plain microgels that can later be converted to contain different types of bioactivities, the inverse electron-demand Diels-Alder reaction between tetrazine and norbornene is utilized, which allows the post-modification of plain microgels stoichiometrically. As a result of adhesive peptide attachment, NPC spreading leads to contractile force generation which can be recorded by tracking microgel displacement. Alternatively, non-adhesive peptide integration results in neurosphere formation that grows within the void space of MAP scaffolds. Although the formed neurospheres do not impose a contractile force on the scaffolds, they are seen to continuously transverse the scaffolds. It is concluded that MAP scaffolds  can be engineered to either promote neurogenesis or enhance stemness depending on the chosen post-modifications of the microgels, which can be key in modulating their phenotypes in various applications in vivo.

摘要

微孔退火颗粒 (MAP) 支架是由组装的水凝胶微球 (微凝胶) 生成的。此前已经证明,MAP 支架具有多孔性、生物相容性,并在注射到中风核心后将神经祖细胞 (NPC) 募集到中风腔中。在这里,目的是研究 NPC 在 MAP 支架内的体外命运。为了创建可以随后转化为包含不同类型生物活性的普通微凝胶,利用四嗪和降冰片烯之间的逆电子需求 Diels-Alder 反应,允许普通微凝胶以化学计量的方式进行后期修饰。由于粘附肽的附着,NPC 的扩散导致收缩力的产生,微凝胶位移的跟踪可以记录收缩力的产生。或者,非粘附肽的整合导致神经球的形成,神经球在 MAP 支架的空隙内生长。尽管形成的神经球不会对支架施加收缩力,但可以看到它们不断穿过支架。因此,可以根据微凝胶的选择后期修饰来设计 MAP 支架,以促进神经发生或增强干性,这对于调节它们在体内各种应用中的表型可能是关键。

相似文献

2
Particle fraction is a bioactive cue in granular scaffolds.颗粒支架中的颗粒部分是一种具有生物活性的信号。
Acta Biomater. 2022 Sep 15;150:111-127. doi: 10.1016/j.actbio.2022.07.051. Epub 2022 Jul 31.
4
Click by Click Microporous Annealed Particle (MAP) Scaffolds.逐点微孔退火颗粒(MAP)支架
Adv Healthc Mater. 2020 May;9(10):e1901391. doi: 10.1002/adhm.201901391. Epub 2020 Apr 24.

引用本文的文献

5
Granular Hydrogels for Harnessing the Immune Response.用于控制免疫反应的颗粒状水凝胶。
Adv Healthc Mater. 2024 Oct;13(25):e2303005. doi: 10.1002/adhm.202303005. Epub 2024 Jan 7.
7
Facile Physicochemical Reprogramming of PEG-Dithiolane Microgels.聚乙二醇二硫醇微凝胶的简便物理化学重组。
Adv Healthc Mater. 2024 Oct;13(25):e2302925. doi: 10.1002/adhm.202302925. Epub 2023 Nov 27.
9
Void Volume Fraction of Granular Scaffolds.颗粒支架的空隙体积分数。
Small. 2023 Oct;19(40):e2303466. doi: 10.1002/smll.202303466. Epub 2023 Jun 2.

本文引用的文献

1
Hydrogel microparticles for biomedical applications.用于生物医学应用的水凝胶微粒
Nat Rev Mater. 2020 Jan;5(1):20-43. doi: 10.1038/s41578-019-0148-6. Epub 2019 Nov 7.
3
Influence of Microgel Fabrication Technique on Granular Hydrogel Properties.微凝胶制备技术对颗粒水凝胶性能的影响。
ACS Biomater Sci Eng. 2021 Sep 13;7(9):4269-4281. doi: 10.1021/acsbiomaterials.0c01612. Epub 2021 Feb 16.
4
Particle Hydrogels Based on Hyaluronic Acid Building Blocks.基于透明质酸构建单元的粒子水凝胶
ACS Biomater Sci Eng. 2016 Nov 14;2(11):2034-2041. doi: 10.1021/acsbiomaterials.6b00444. Epub 2016 Sep 27.
7
Click by Click Microporous Annealed Particle (MAP) Scaffolds.逐点微孔退火颗粒(MAP)支架
Adv Healthc Mater. 2020 May;9(10):e1901391. doi: 10.1002/adhm.201901391. Epub 2020 Apr 24.
8
Hydrogel systems and their role in neural tissue engineering.水凝胶系统及其在神经组织工程中的作用。
J R Soc Interface. 2020 Jan;17(162):20190505. doi: 10.1098/rsif.2019.0505. Epub 2020 Jan 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验