Suppr超能文献

聚乙二醇二硫醇微凝胶的简便物理化学重组。

Facile Physicochemical Reprogramming of PEG-Dithiolane Microgels.

机构信息

Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA.

BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA.

出版信息

Adv Healthc Mater. 2024 Oct;13(25):e2302925. doi: 10.1002/adhm.202302925. Epub 2023 Nov 27.

Abstract

Granular biomaterials have found widespread applications in tissue engineering, in part because of their inherent porosity, tunable properties, injectability, and 3D printability. However, the assembly of granular hydrogels typically relies on spherical microparticles and more complex particle geometries have been limited in scope, often requiring templating of individual microgels by microfluidics or in-mold polymerization. Here, we use dithiolane-functionalized synthetic macromolecules to fabricate photopolymerized microgels via batch emulsion, and then harness the dynamic disulfide crosslinks to rearrange the network. Through unconfined compression between parallel plates in the presence of photoinitiated radicals, we transform the isotropic microgels are transformed into disks. Characterizing this process, we find that the areas of the microgel surface in contact with the compressive plates are flattened while the curvature of the uncompressed microgel boundaries increases. When cultured with C2C12 myoblasts, cells localize to regions of higher curvature on the disk-shaped microgel surfaces. This altered localization affects cell-driven construction of large supraparticle scaffold assemblies, with spherical particles assembling without specific junction structure while disk microgels assemble preferentially on their curved surfaces. These results represent a unique spatiotemporal process for rapid reprocessing of microgels into anisotropic shapes, providing new opportunities to study shape-driven mechanobiological cues during and after granular hydrogel assembly.

摘要

颗粒状生物材料在组织工程中得到了广泛的应用,部分原因是其固有的多孔性、可调特性、可注射性和 3D 可打印性。然而,颗粒状水凝胶的组装通常依赖于球形微球,而更复杂的颗粒形状的应用范围有限,通常需要通过微流控或模内聚合对单个微凝胶进行模板化。在这里,我们使用二硫醇官能化的合成大分子通过批量乳液来制备光聚合微凝胶,然后利用动态二硫键交联来重新排列网络。通过在光引发自由基存在下在平行板之间进行无约束压缩,我们将各向同性微凝胶转变为圆盘。通过对该过程进行表征,我们发现与压缩板接触的微凝胶表面区域被压平,而未压缩的微凝胶边界的曲率增加。当与 C2C12 成肌细胞共培养时,细胞定位于盘状微凝胶表面曲率较高的区域。这种位置的改变会影响细胞驱动的大超颗粒支架组装,球形颗粒组装时没有特定的连接结构,而圆盘微凝胶则优先在其曲面上组装。这些结果代表了一种将微凝胶快速重新加工成各向异性形状的独特时空过程,为研究颗粒状水凝胶组装过程中和之后的形状驱动力学信号提供了新的机会。

相似文献

1
Facile Physicochemical Reprogramming of PEG-Dithiolane Microgels.
Adv Healthc Mater. 2024 Oct;13(25):e2302925. doi: 10.1002/adhm.202302925. Epub 2023 Nov 27.
2
Dynamically crosslinked thermoresponsive granular hydrogels.
J Biomed Mater Res A. 2023 Oct;111(10):1577-1587. doi: 10.1002/jbm.a.37556. Epub 2023 May 18.
3
Novel microgel-based scaffolds to study the effect of degradability on human dermal fibroblasts.
Biomed Mater. 2018 Jul 19;13(5):055007. doi: 10.1088/1748-605X/aaca57.
6
Conductive Microgel Annealed Scaffolds Enhance Myogenic Potential of Myoblastic Cells.
Adv Healthc Mater. 2024 Oct;13(25):e2302500. doi: 10.1002/adhm.202302500. Epub 2023 Dec 18.
7
Influence of Microgel Fabrication Technique on Granular Hydrogel Properties.
ACS Biomater Sci Eng. 2021 Sep 13;7(9):4269-4281. doi: 10.1021/acsbiomaterials.0c01612. Epub 2021 Feb 16.
8
Functionalized Microgel Rods Interlinked into Soft Macroporous Structures for 3D Cell Culture.
Adv Sci (Weinh). 2022 Apr;9(10):e2103554. doi: 10.1002/advs.202103554. Epub 2022 Jan 14.
9
Single versus dual microgel species for forming guest-host microporous annealed particle PEG-MAL hydrogel.
J Biomed Mater Res A. 2023 Sep;111(9):1379-1389. doi: 10.1002/jbm.a.37540. Epub 2023 Apr 3.
10
Microgel dynamics within the 3D porous structure of transparent PEG hydrogels.
Colloids Surf B Biointerfaces. 2023 Jan;221:112938. doi: 10.1016/j.colsurfb.2022.112938. Epub 2022 Oct 18.

引用本文的文献

1
Light-based fabrication and 4D customization of hydrogel biomaterials.
Nat Rev Bioeng. 2025 Feb;3(2):159-180. doi: 10.1038/s44222-024-00234-w. Epub 2024 Sep 26.
2
Measurement and Comparison of Hyaluronic Acid Hydrogel Mechanics Across Length Scales.
J Biomed Mater Res A. 2025 Mar;113(3):e37889. doi: 10.1002/jbm.a.37889.
3
Controlling Microparticle Aspect Ratio via Photolithography for Injectable Granular Hydrogel Formation and Cell Delivery.
ACS Biomater Sci Eng. 2025 Feb 10;11(2):1242-1252. doi: 10.1021/acsbiomaterials.4c02102. Epub 2025 Jan 9.

本文引用的文献

1
Dynamically Cross-Linked Granular Hydrogels for 3D Printing and Therapeutic Delivery.
ACS Appl Bio Mater. 2023 Sep 18;6(9):3683-3695. doi: 10.1021/acsabm.3c00337. Epub 2023 Aug 16.
3
Proliferating active matter.
Nat Rev Phys. 2023 May 31:1-13. doi: 10.1038/s42254-023-00593-0.
4
Granular Hydrogels in Biofabrication: Recent Advances and Future Perspectives.
Adv Healthc Mater. 2024 Oct;13(25):e2301388. doi: 10.1002/adhm.202301388. Epub 2023 Jun 27.
5
Shaping Synthetic Multicellular and Complex Multimaterial Tissues via Embedded Extrusion-Volumetric Printing of Microgels.
Adv Mater. 2023 Sep;35(36):e2301673. doi: 10.1002/adma.202301673. Epub 2023 Jul 30.
8
High-Throughput Bioprinting of Geometrically-Controlled Pre-Vascularized Injectable Microgels for Accelerated Tissue Regeneration.
Adv Healthc Mater. 2023 Sep;12(22):e2202840. doi: 10.1002/adhm.202202840. Epub 2023 May 31.
9
Single versus dual microgel species for forming guest-host microporous annealed particle PEG-MAL hydrogel.
J Biomed Mater Res A. 2023 Sep;111(9):1379-1389. doi: 10.1002/jbm.a.37540. Epub 2023 Apr 3.
10
Emergent collective organization of bone cells in complex curvature fields.
Nat Commun. 2023 Mar 3;14(1):855. doi: 10.1038/s41467-023-36436-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验