Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building George Square, Edinburgh, EH8 9XD, UK.
MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital Crewe Road South, Edinburgh, EH4 2XR, UK.
Chembiochem. 2022 Aug 17;23(16):e202200321. doi: 10.1002/cbic.202200321. Epub 2022 Jul 7.
Nanobodies are becoming increasingly popular as tools for manipulating and visualising proteins in vivo. The ability to control nanobody/antigen interactions using light could provide precise spatiotemporal control over protein function. We develop a general approach to engineer photo-activatable nanobodies using photocaged amino acids that are introduced into the target binding interface by genetic code expansion. Guided by computational alanine scanning and molecular dynamics simulations, we tune nanobody/target binding affinity to eliminate binding before uncaging. Upon photo-activation using 365 nm light, binding is restored. We use this approach to generate improved photocaged variants of two anti-GFP nanobodies that function robustly when directly expressed in a complex intracellular environment together with their antigen. We apply them to control subcellular protein localisation in the nematode worm Caenorhabditis elegans. Our approach applies predictions derived from computational modelling directly in a living animal and demonstrates the importance of accounting for in vivo effects on protein-protein interactions.
纳米抗体作为在体内操作和可视化蛋白质的工具越来越受欢迎。利用光来控制纳米抗体/抗原相互作用的能力,可以提供对蛋白质功能的精确时空控制。我们开发了一种使用光笼氨基酸工程光激活纳米抗体的通用方法,这些氨基酸通过遗传密码扩展引入到目标结合界面。通过计算丙氨酸扫描和分子动力学模拟的指导,我们调整纳米抗体/目标结合亲和力以在解笼前消除结合。使用 365nm 光进行光激活后,结合得以恢复。我们使用这种方法生成了两种抗 GFP 纳米抗体的改进型光笼变体,当它们与抗原一起直接在复杂的细胞内环境中表达时,它们的功能非常强大。我们将它们应用于控制线虫秀丽隐杆线虫中的亚细胞蛋白定位。我们的方法将来自计算建模的预测直接应用于活体动物,并证明了考虑蛋白质-蛋白质相互作用的体内效应的重要性。