Suppr超能文献

关键微生物类群通过长期的资源富集加速了纤维素和木质素的分解。

Keystone microbial taxa drive the accelerated decompositions of cellulose and lignin by long-term resource enrichments.

机构信息

Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China.

出版信息

Sci Total Environ. 2022 Oct 10;842:156814. doi: 10.1016/j.scitotenv.2022.156814. Epub 2022 Jun 19.

Abstract

Lignin and cellulose are the most important component of crop straw entering arable soil. The decomposition of lignin and cellulose are related to carbon sequestration and soil fertility. The keystone microbes decomposing lignin and cellulose in cropland and their impact on agricultural management, however, remains largely unclear. In this study, we traced the carbon (C) from highly enriched C-labeled (atom% C = 99 %) lignin and cellulose to functional keystone microbes in soils of a 26-year fertilization field experiment with stable isotope probing (SIP). C-cellulose and C-lignin decomposition were significantly accelerated with the long-term application of fertilization, especially with the combination of organic and chemical fertilization (NPKM). The C was mainly assimilated by bacteria Acidobacteria (i.e. GP1, GP3, GP6), Proteobacteria (i.e. unidentified gamaproteobactiera, Bradyrhizobium), and fungi Ascomycota (i.e. Talaromyces and Fusarium, etc.). The keystone bacteria taxa decomposing cellulose and lignin were large overlapped, but substantially shaped by fertilization. For instance, GP3 was the dominant bacterium that decomposed both cellulose and lignin in no fertilizer control (CK), while GP1 and GP6 were the ones in chemical fertilization (NPK) and NPKM, respectively. The decomposition rates of cellulose in different fertilizations were majorly predicted by soil total phosphorus (TP), functional fungi abundance, total nitrogen (TN), whereas functional bacterial and fungal abundance, TP, and community structure of functional fungi manipulated the decomposing rate of lignin. Together, we demonstrate that keystone functional microbes decomposing cellulose and lignin were largely concurring and significantly altered by long-term resources enrichment, which drives the similar patterns of decomposition rates of these two substrates along the resource enrichment gradient.

摘要

木质素和纤维素是进入耕地土壤的作物秸秆的最重要成分。木质素和纤维素的分解与碳固存和土壤肥力有关。然而,分解农田木质素和纤维素的关键微生物及其对农业管理的影响在很大程度上仍不清楚。在这项研究中,我们通过稳定同位素探测 (SIP) 追踪了来自高度富集的 C 标记(原子% C = 99%)木质素和纤维素的 C 进入土壤中功能关键微生物。长期施肥,特别是有机肥和化肥(NPKM)的结合,显著加速了 C-纤维素和 C-木质素的分解。C 主要被细菌酸杆菌(即 GP1、GP3、GP6)、变形菌(即未鉴定的 gamaproteobactiera、Bradyrhizobium)和真菌子囊菌(即 Talaromyces 和 Fusarium 等)同化。分解纤维素和木质素的关键细菌类群有很大的重叠,但主要受施肥的影响。例如,GP3 是在无肥对照(CK)中分解纤维素和木质素的主要细菌,而 GP1 和 GP6 分别是在化肥(NPK)和 NPKM 中分解纤维素和木质素的主要细菌。不同施肥方式下纤维素的分解率主要由土壤总磷(TP)、功能真菌丰度、总氮(TN)预测,而功能细菌和真菌丰度、TP 以及功能真菌群落结构则控制着木质素的分解率。总之,我们证明了分解纤维素和木质素的关键功能微生物在很大程度上是一致的,并且由于长期资源富集而发生了显著改变,这导致了这两种基质在资源富集梯度上的分解率呈现相似的模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验