Suppr超能文献

长期堆肥改良剂通过驱动真菌群落组成的变化和促进真菌多样性和系统发育相关性来刺激纤维素分解。

Long-Term Compost Amendment Spurs Cellulose Decomposition by Driving Shifts in Fungal Community Composition and Promoting Fungal Diversity and Phylogenetic Relatedness.

机构信息

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

mBio. 2022 Jun 28;13(3):e0032322. doi: 10.1128/mbio.00323-22. Epub 2022 May 2.

Abstract

Cellulose is the most abundant polysaccharide in plant biomass and an important precursor of soil organic matter formation. Fungi play a key role in carbon cycling dynamics because they tend to decompose recalcitrant materials. Here, we applied [C]cellulose and [C]cellulose to distinguish the effects of application of compost, nitrogen-phosphorus-potassium (NPK) fertilizer, and no fertilizer (control) for 27 years upon cellulose decomposition via RNA-based stable isotope probing (RNA-SIP). The loss ratio of added cellulose C in compost soil was 67.6 to 106.7% higher than in NPK and control soils during their 20-day incubation. (mainly members of the genus Cryptococcus) dominated cellulose utilization in compost soil, whereas the copiotrophic were more abundant in NPK and unfertilized soils. Compared with NPK and control soils, compost application increased the diversity of C-assimilating fungi. The C-labeled fungal communities in compost soil were more phylogenetically clustered and exhibited greater species relatedness than those in NPK and control soils, perhaps because of stringent filtering of narrow-spectrum organic resources and biological invasion originating from added compost. These changes led to an augmented decomposition capacity of fungal species for cellulose-rich substrates and reduced cellulose C sequestration efficiency. The RNA-SIP technique is more sensitive to responses of fungi to altered soil resource availability than DNA-SIP. Overall, long-term compost application modified fungal community composition and promoted fungal diversity and phylogenetic relatedness, accelerating the decomposition of substrate cellulose in soil. This work also highlights the RNA-SIP technique's value for comprehensively assessing the contributions of active fungi to the substrate decomposition process. Cellulose is a very rich component in plant biomass and an important precursor of soil organic matter formation. Fungal communities are known to be important drivers of organic carbon accumulation in arable soils. However, current understanding of responses of fungal species to cellulose amendment and the contributions of active fungi to substrate decomposition process is still very superficial. Here, we established a [C]cellulose microcosm experiment with soils subjected to long-term application of compost, nitrogen-phosphorus-potassium (NPK) fertilizer, and no fertilizer (control). The novel C-RNA-SIP technique with subsequent high-throughput sequencing was used to investigate the linkages between active fungal taxa and cellulose decomposition. Our study demonstrated that dominated cellulose utilization in compost soil, whereas the copiotrophic were more enriched in both NPK and unfertilized soils. We also found that the compost amendment promoted fungal diversity and phylogenetic relatedness and strengthened the decomposition capacity of fungi for cellulose-rich substrates by enhancing synergistic interactions, thereby reducing cellulose C sequestration efficiency. Overall, our research has implications for our understanding of the role of active fungi in cellulose C transformation in soils undergoing different types of long-term nutrient management.

摘要

纤维素是植物生物质中最丰富的多糖,也是土壤有机质形成的重要前体。真菌在碳循环动态中起着关键作用,因为它们往往会分解顽固的物质。在这里,我们应用 [C]纤维素和 [C]纤维素通过基于 RNA 的稳定同位素探测 (RNA-SIP) 来区分堆肥、氮磷钾 (NPK) 肥料和 27 年不施肥 (对照) 对纤维素分解的影响。在 20 天的培养过程中,添加纤维素 C 在堆肥土壤中的损失率比 NPK 和对照土壤中的损失率高 67.6%至 106.7%。(主要是隐球菌属) 在堆肥土壤中利用纤维素,而在 NPK 和未施肥土壤中,富营养菌更为丰富。与 NPK 和对照土壤相比,堆肥的应用增加了同化真菌的多样性。堆肥土壤中标记 C 的真菌群落在系统发育上聚类程度更高,物种相关性更强,这可能是由于添加的堆肥对窄谱有机资源的严格过滤和生物入侵所致。这些变化导致纤维素丰富底物的真菌物种分解能力增强,纤维素 C 固存效率降低。RNA-SIP 技术比 DNA-SIP 技术更能敏感地反映真菌对改变的土壤资源可利用性的响应。总的来说,长期堆肥应用改变了真菌群落组成,促进了真菌多样性和系统发育相关性,加速了土壤中基质纤维素的分解。这项工作还强调了 RNA-SIP 技术在综合评估活性真菌对基质分解过程的贡献方面的价值。纤维素是植物生物质中非常丰富的成分,也是土壤有机质形成的重要前体。真菌群落被认为是旱地土壤中有机碳积累的重要驱动因素。然而,目前对真菌物种对纤维素添加的响应以及活性真菌对基质分解过程的贡献的了解还非常肤浅。在这里,我们用长期施用堆肥、氮磷钾 (NPK) 肥料和不施肥 (对照) 的土壤建立了一个 [C]纤维素微宇宙实验。随后采用高通量测序的新型 C-RNA-SIP 技术来研究活性真菌类群与纤维素分解之间的联系。我们的研究表明,(主要是隐球菌属) 在堆肥土壤中利用纤维素,而在 NPK 和未施肥土壤中,富营养菌更为丰富。我们还发现,堆肥的添加通过增强协同作用,促进了真菌多样性和系统发育相关性,并增强了真菌对富含纤维素的基质的分解能力,从而降低了纤维素 C 的固存效率。总的来说,我们的研究有助于我们理解在不同类型的长期养分管理下,活性真菌在土壤中纤维素 C 转化中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a218/9239258/360d570edbd1/mbio.00323-22-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验