Suppr超能文献

从微阵列平台到 qRT-PCR 检测架桥建立川崎病诊断分类器。

Bridging a diagnostic Kawasaki disease classifier from a microarray platform to a qRT-PCR assay.

机构信息

SkylineDx, Rotterdam, The Netherlands.

Department of Infectious Disease, Imperial College London, London, UK.

出版信息

Pediatr Res. 2023 Feb;93(3):559-569. doi: 10.1038/s41390-022-02148-y. Epub 2022 Jun 22.

Abstract

BACKGROUND

Kawasaki disease (KD) is a systemic vasculitis that mainly affects children under 5 years of age. Up to 30% of patients develop coronary artery abnormalities, which are reduced with early treatment. Timely diagnosis of KD is challenging but may become more straightforward with the recent discovery of a whole-blood host response classifier that discriminates KD patients from patients with other febrile conditions. Here, we bridged this microarray-based classifier to a clinically applicable quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay: the Kawasaki Disease Gene Expression Profiling (KiDs-GEP) classifier.

METHODS

We designed and optimized a qRT-PCR assay and applied it to a subset of samples previously used for the classifier discovery to reweight the original classifier.

RESULTS

The performance of the KiDs-GEP classifier was comparable to the original classifier with a cross-validated area under the ROC curve of 0.964 [95% CI: 0.924-1.00] vs 0.992 [95% CI: 0.978-1.00], respectively. Both classifiers demonstrated similar trends over various disease conditions, with the clearest distinction between individuals diagnosed with KD vs viral infections.

CONCLUSION

We successfully bridged the microarray-based classifier into the KiDs-GEP classifier, a more rapid and more cost-efficient qRT-PCR assay, bringing a diagnostic test for KD closer to the hospital clinical laboratory.

IMPACT

A diagnostic test is needed for Kawasaki disease and is currently not available. We describe the development of a One-Step multiplex qRT-PCR assay and the subsequent modification (i.e., bridging) of the microarray-based host response classifier previously described by Wright et al. The bridged KiDs-GEP classifier performs well in discriminating Kawasaki disease patients from febrile controls. This host response clinical test for Kawasaki disease can be adapted to the hospital clinical laboratory.

摘要

背景

川崎病(KD)是一种主要影响 5 岁以下儿童的全身性血管炎。多达 30%的患者会出现冠状动脉异常,而早期治疗可减少这种异常。KD 的及时诊断具有挑战性,但随着最近发现一种全血宿主反应分类器,可以将 KD 患者与其他发热性疾病患者区分开来,这可能会变得更加简单。在这里,我们将这个基于微阵列的分类器与一种临床应用的定量逆转录聚合酶链反应(qRT-PCR)检测方法相连接:川崎病基因表达谱分析(KiDs-GEP)分类器。

方法

我们设计并优化了 qRT-PCR 检测方法,并将其应用于先前用于分类器发现的样本子集,以重新加权原始分类器。

结果

KiDs-GEP 分类器的性能与原始分类器相当,交叉验证的ROC 曲线下面积分别为 0.964 [95%CI:0.924-1.00]和 0.992 [95%CI:0.978-1.00]。两个分类器在各种疾病条件下表现出相似的趋势,KD 与病毒感染个体之间的区别最为明显。

结论

我们成功地将基于微阵列的分类器桥接到 KiDs-GEP 分类器中,这是一种更快、更具成本效益的 qRT-PCR 检测方法,使 KD 的诊断测试更接近医院临床实验室。

影响

川崎病需要一种诊断测试,但目前尚无。我们描述了一种一步多重 qRT-PCR 检测方法的开发,以及随后对 Wright 等人先前描述的基于微阵列的宿主反应分类器的修改(即桥接)。桥接的 KiDs-GEP 分类器在区分川崎病患者和发热对照组方面表现良好。这种川崎病宿主反应临床测试可以适应医院临床实验室。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b33a/9988687/7b8cce8fea6a/41390_2022_2148_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验