Suppr超能文献

整合和验证宿主转录本特征,包括一种新的三转录本结核特征,以实现儿童发热性疾病的一步多类诊断。

Integration and validation of host transcript signatures, including a novel 3-transcript tuberculosis signature, to enable one-step multiclass diagnosis of childhood febrile disease.

机构信息

Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK.

Centre for Paediatrics and Child Health, Imperial College London, London, UK.

出版信息

J Transl Med. 2024 Aug 29;22(1):802. doi: 10.1186/s12967-024-05241-4.

Abstract

BACKGROUND

Whole blood host transcript signatures show great potential for diagnosis of infectious and inflammatory illness, with most published signatures performing binary classification tasks. Barriers to clinical implementation include validation studies, and development of strategies that enable simultaneous, multiclass diagnosis of febrile illness based on gene expression.

METHODS

We validated five distinct diagnostic signatures for paediatric infectious diseases in parallel using a single NanoString nCounter® experiment. We included a novel 3-transcript signature for childhood tuberculosis, and four published signatures which differentiate bacterial infection, viral infection, or Kawasaki disease from other febrile illnesses. Signature performance was assessed using receiver operating characteristic curve statistics. We also explored conceptual frameworks for multiclass diagnostic signatures, including additional transcripts found to be significantly differentially expressed in previous studies. Relaxed, regularised logistic regression models were used to derive two novel multiclass signatures: a mixed One-vs-All model (MOVA), running multiple binomial models in parallel, and a full-multiclass model. In-sample performance of these models was compared using radar-plots and confusion matrix statistics.

RESULTS

Samples from 91 children were included in the study: 23 bacterial infections (DB), 20 viral infections (DV), 14 Kawasaki disease (KD), 18 tuberculosis disease (TB), and 16 healthy controls. The five signatures tested demonstrated cross-platform performance similar to their primary discovery-validation cohorts. The signatures could differentiate: KD from other diseases with area under ROC curve (AUC) of 0.897 [95% confidence interval: 0.822-0.972]; DB from DV with AUC of 0.825 [0.691-0.959] (signature-1) and 0.867 [0.753-0.982] (signature-2); TB from other diseases with AUC of 0.882 [0.787-0.977] (novel signature); TB from healthy children with AUC of 0.910 [0.808-1.000]. Application of signatures outside of their designed context reduced performance. In-sample error rates for the multiclass models were 13.3% for the MOVA model and 0.0% for the full-multiclass model. The MOVA model misclassified DB cases most frequently (18.7%) and TB cases least (2.7%).

CONCLUSIONS

Our study demonstrates the feasibility of NanoString technology for cross-platform validation of multiple transcriptomic signatures in parallel. This external cohort validated performance of all five signatures, including a novel sparse TB signature. Two exploratory multi-class models showed high potential accuracy across four distinct diagnostic groups.

摘要

背景

全血宿主转录谱在诊断感染和炎症性疾病方面具有巨大潜力,大多数已发表的特征可用于二进制分类任务。临床实施的障碍包括验证研究,以及开发能够基于基因表达同时对发热疾病进行多类别诊断的策略。

方法

我们使用单个 NanoString nCounter®实验平行验证了五个用于儿科传染病的不同诊断特征。我们包括一个用于儿童结核病的新型 3 个转录本特征,以及四个区分细菌感染、病毒感染或川崎病与其他发热疾病的已发表特征。使用接收者操作特征曲线统计数据评估特征性能。我们还探讨了多类别诊断特征的概念框架,包括在先前研究中发现的差异表达的其他转录本。使用松弛正则逻辑回归模型从两个新的多类别特征:混合 One-vs-All 模型(MOVA),并行运行多个二项式模型,和全多类别模型。使用雷达图和混淆矩阵统计数据比较这些模型的内部样本性能。

结果

研究纳入了 91 名儿童的样本:23 例细菌感染(DB),20 例病毒感染(DV),14 例川崎病(KD),18 例结核病(TB)和 16 例健康对照。测试的五个特征显示出与主要发现验证队列相似的跨平台性能。这些特征可以区分:KD 与其他疾病的 AUC 为 0.897[95%置信区间:0.822-0.972];DB 与 DV 的 AUC 为 0.825[0.691-0.959](特征 1)和 0.867[0.753-0.982](特征 2);TB 与其他疾病的 AUC 为 0.882[0.787-0.977](新型特征);TB 与健康儿童的 AUC 为 0.910[0.808-1.000]。在超出其设计范围应用特征会降低性能。多类模型的内部样本错误率为 MOVA 模型 13.3%,全多类模型 0.0%。MOVA 模型最常错误分类 DB 病例(18.7%),最不常错误分类 TB 病例(2.7%)。

结论

我们的研究表明,NanoString 技术在平行验证多个转录组特征方面具有可行性。本外群验证了所有五个特征的性能,包括一个新的稀疏 TB 特征。两个探索性的多类别模型在四个不同的诊断组中显示出很高的准确性潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18bb/11360490/02c4a1ca3ead/12967_2024_5241_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验