Suppr超能文献

等剂量线——一种基于集合论的患者特定 QA 测量方法,用于比较光子放射治疗中计划的和实际的等剂量分布。

Isodoses-a set theory-based patient-specific QA measure to compare planned and delivered isodose distributions in photon radiotherapy.

机构信息

AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow, Poland.

Faculty of Materials Science and Physics, Cracow University of Technology, Podchorążych 1, 30-084, Krakow, Poland.

出版信息

Strahlenther Onkol. 2022 Sep;198(9):849-861. doi: 10.1007/s00066-022-01964-9. Epub 2022 Jun 22.

Abstract

BACKGROUND

The gamma index and dose-volume histogram (DVH)-based patient-specific quality assurance (QA) measures commonly applied in radiotherapy planning are unable to simultaneously deliver detailed locations and magnitudes of discrepancy between isodoses of planned and delivered dose distributions. By exploiting statistical classification performance measures such as sensitivity or specificity, compliance between a planned and delivered isodose may be evaluated locally, both for organs-at-risk (OAR) and the planning target volume (PTV), at any specified isodose level. Thus, a patient-specific QA tool may be developed to supplement those presently available in clinical radiotherapy.

MATERIALS AND METHODS

A method was developed to locally establish and report dose delivery errors in three-dimensional (3D) isodoses of planned (reference) and delivered (evaluated) dose distributions simultaneously as a function the dose level and of spatial location. At any given isodose level, the total volume of delivered dose containing the reference and the evaluated isodoses is locally decomposed into four subregions: true positive-subregions within both reference and evaluated isodoses, true negative-outside of both of these isodoses, false positive-inside the evaluated isodose but not the reference isodose, and false negatives-inside the reference isodose but not the evaluated isodose. Such subregions may be established over the whole volume of delivered dose. This decomposition allows the construction of a confusion matrix and calculation of various indices to quantify the discrepancies between the selected planned and delivered isodose distributions, over the complete range of values of dose delivered. The 3D projection and visualization of the spatial distribution of these discrepancies facilitates the application of the developed method in clinical practice.

RESULTS

Several clinical photon radiotherapy plans were analyzed using the developed method. In some plans at certain isodose levels, dose delivery errors were found at anatomically significant locations. These errors were not otherwise highlighted-neither by gamma analysis nor by DVH-based QA measures. A specially developed 3D projection tool to visualize the spatial distribution of such errors against anatomical features of the patient aids in the proposed analysis of therapy plans.

CONCLUSIONS

The proposed method is able to spatially locate delivery errors at selected isodose levels and may supplement the presently applied gamma analysis and DVH-based QA measures in patient-specific radiotherapy planning.

摘要

背景

伽马指数和剂量-体积直方图(DVH)基于患者的特定质量保证(QA)措施,通常应用于放射治疗计划中,无法同时提供计划剂量分布和交付剂量分布等剂量之间的详细位置和差异程度。通过利用统计分类性能指标,如敏感性或特异性,可以在任何特定的等剂量水平上局部评估计划和交付的等剂量之间的一致性,包括危及器官(OAR)和计划靶区(PTV)。因此,可以开发一种患者特定的 QA 工具来补充目前临床放射治疗中可用的工具。

材料和方法

开发了一种方法,可以同时作为剂量水平和空间位置的函数,局部建立和报告计划(参考)和交付(评估)剂量分布的三维(3D)等剂量中的剂量传递误差。在任何给定的等剂量水平下,包含参考和评估等剂量的交付剂量的总体积被局部分解为四个子区域:参考和评估等剂量内的真实阳性子区域、这两个等剂量之外的真实阴性子区域、评估等剂量内但参考等剂量外的假阳性子区域,以及参考等剂量内但评估等剂量外的假阴性子区域。这些子区域可以在整个交付剂量体积上建立。这种分解允许构建混淆矩阵并计算各种指标,以量化所选计划和交付等剂量分布之间的差异,涵盖交付剂量的完整范围。这些差异的空间分布的 3D 投影和可视化有助于将开发的方法应用于临床实践。

结果

使用开发的方法分析了几个临床光子放射治疗计划。在某些计划的某些等剂量水平下,在解剖学上重要的位置发现了剂量传递误差。这些误差没有被伽马分析或基于 DVH 的 QA 措施突出显示。一种专门开发的 3D 投影工具,用于可视化针对患者解剖特征的此类误差的空间分布,有助于分析治疗计划。

结论

所提出的方法能够在选定的等剂量水平上定位传递误差,并可能补充目前在患者特定放射治疗计划中应用的伽马分析和基于 DVH 的 QA 措施。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验