Suppr超能文献

使用图卷积网络鉴定泛激酶家族抑制剂以揭示家族敏感的前体部分。

Identification of pan-kinase-family inhibitors using graph convolutional networks to reveal family-sensitive pre-moieties.

机构信息

Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.

Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.

出版信息

BMC Bioinformatics. 2022 Jun 22;23(Suppl 4):247. doi: 10.1186/s12859-022-04773-0.

Abstract

BACKGROUND

Human protein kinases, the key players in phosphoryl signal transduction, have been actively investigated as drug targets for complex diseases such as cancer, immune disorders, and Alzheimer's disease, with more than 60 successful drugs developed in the past 30 years. However, many of these single-kinase inhibitors show low efficacy and drug resistance has become an issue. Owing to the occurrence of highly conserved catalytic sites and shared signaling pathways within a kinase family, multi-target kinase inhibitors have attracted attention.

RESULTS

To design and identify such pan-kinase family inhibitors (PKFIs), we proposed PKFI sets for eight families using 200,000 experimental bioactivity data points and applied a graph convolutional network (GCN) to build classification models. Furthermore, we identified and extracted family-sensitive (only present in a family) pre-moieties (parts of complete moieties) by utilizing a visualized explanation (i.e., where the model focuses on each input) method for deep learning, gradient-weighted class activation mapping (Grad-CAM).

CONCLUSIONS

This study is the first to propose the PKFI sets, and our results point out and validate the power of GCN models in understanding the pre-moieties of PKFIs within and across different kinase families. Moreover, we highlight the discoverability of family-sensitive pre-moieties in PKFI identification and drug design.

摘要

背景

作为磷酸化信号转导的关键参与者,人类蛋白激酶一直是癌症、免疫紊乱和阿尔茨海默病等复杂疾病药物靶点的研究热点,在过去 30 年中已经开发出 60 多种成功的药物。然而,许多这些单激酶抑制剂的疗效较低,并且已经出现耐药性问题。由于激酶家族内存在高度保守的催化位点和共享的信号通路,多靶标激酶抑制剂引起了人们的关注。

结果

为了设计和鉴定这种泛激酶家族抑制剂(PKFI),我们使用 20 万个实验生物活性数据点为八个家族提出了 PKFI 集,并应用图卷积网络(GCN)构建分类模型。此外,我们利用可视化解释(即模型关注每个输入的位置)方法,即深度学习中的梯度加权类激活映射(Grad-CAM),来识别和提取家族敏感(仅存在于一个家族中)前体部分(完整部分的一部分)。

结论

本研究首次提出了 PKFI 集,我们的结果指出并验证了 GCN 模型在理解不同激酶家族内和跨家族的 PKFI 前体部分方面的能力。此外,我们强调了在 PKFI 鉴定和药物设计中发现家族敏感前体部分的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08f1/9214975/20623a314380/12859_2022_4773_Fig1_HTML.jpg

相似文献

1
2
Exploring kinase family inhibitors and their moiety preferences using deep SHapley additive exPlanations.
BMC Bioinformatics. 2022 Jun 20;23(Suppl 4):242. doi: 10.1186/s12859-022-04760-5.
3
MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis.
Comput Biol Med. 2022 Mar;142:105239. doi: 10.1016/j.compbiomed.2022.105239. Epub 2022 Jan 19.
4
Hi-GCN: A hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction.
Comput Biol Med. 2020 Dec;127:104096. doi: 10.1016/j.compbiomed.2020.104096. Epub 2020 Nov 3.
5
An extensible hierarchical graph convolutional network for early Alzheimer's disease identification.
Comput Methods Programs Biomed. 2023 Aug;238:107597. doi: 10.1016/j.cmpb.2023.107597. Epub 2023 May 15.
6
MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder.
Comput Biol Med. 2022 Sep;148:105823. doi: 10.1016/j.compbiomed.2022.105823. Epub 2022 Jul 6.
7
TE-HI-GCN: An Ensemble of Transfer Hierarchical Graph Convolutional Networks for Disorder Diagnosis.
Neuroinformatics. 2022 Apr;20(2):353-375. doi: 10.1007/s12021-021-09548-1. Epub 2021 Nov 11.
9
Discovery of moiety preference by Shapley value in protein kinase family using random forest models.
BMC Bioinformatics. 2022 Apr 15;23(Suppl 4):130. doi: 10.1186/s12859-022-04663-5.
10

引用本文的文献

本文引用的文献

2
PIM kinase inhibition: co-targeted therapeutic approaches in prostate cancer.
Signal Transduct Target Ther. 2020 Jan 31;5(1):7. doi: 10.1038/s41392-020-0109-y.
3
EGFR modulates complement activation in head and neck squamous cell carcinoma.
BMC Cancer. 2020 Feb 13;20(1):121. doi: 10.1186/s12885-020-6615-z.
5
Deep learning enables rapid identification of potent DDR1 kinase inhibitors.
Nat Biotechnol. 2019 Sep;37(9):1038-1040. doi: 10.1038/s41587-019-0224-x. Epub 2019 Sep 2.
6
Artificial Intelligence Approach to Find Lead Compounds for Treating Tumors.
J Phys Chem Lett. 2019 Aug 1;10(15):4382-4400. doi: 10.1021/acs.jpclett.9b01426. Epub 2019 Jul 22.
7
Identification of the PCA29 gene signature as a predictor in prostate cancer.
J Bioinform Comput Biol. 2019 Jun;17(3):1940006. doi: 10.1142/S0219720019400067.
8
Targeting the Complement Pathway as a Therapeutic Strategy in Lung Cancer.
Front Immunol. 2019 May 10;10:954. doi: 10.3389/fimmu.2019.00954. eCollection 2019.
9
ChEMBL: towards direct deposition of bioassay data.
Nucleic Acids Res. 2019 Jan 8;47(D1):D930-D940. doi: 10.1093/nar/gky1075.
10
Pan-SRC kinase inhibition blocks B-cell receptor oncogenic signaling in non-Hodgkin lymphoma.
Blood. 2018 May 24;131(21):2345-2356. doi: 10.1182/blood-2017-10-809210. Epub 2018 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验