Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
BMC Bioinformatics. 2022 Jun 22;23(Suppl 4):247. doi: 10.1186/s12859-022-04773-0.
Human protein kinases, the key players in phosphoryl signal transduction, have been actively investigated as drug targets for complex diseases such as cancer, immune disorders, and Alzheimer's disease, with more than 60 successful drugs developed in the past 30 years. However, many of these single-kinase inhibitors show low efficacy and drug resistance has become an issue. Owing to the occurrence of highly conserved catalytic sites and shared signaling pathways within a kinase family, multi-target kinase inhibitors have attracted attention.
To design and identify such pan-kinase family inhibitors (PKFIs), we proposed PKFI sets for eight families using 200,000 experimental bioactivity data points and applied a graph convolutional network (GCN) to build classification models. Furthermore, we identified and extracted family-sensitive (only present in a family) pre-moieties (parts of complete moieties) by utilizing a visualized explanation (i.e., where the model focuses on each input) method for deep learning, gradient-weighted class activation mapping (Grad-CAM).
This study is the first to propose the PKFI sets, and our results point out and validate the power of GCN models in understanding the pre-moieties of PKFIs within and across different kinase families. Moreover, we highlight the discoverability of family-sensitive pre-moieties in PKFI identification and drug design.
作为磷酸化信号转导的关键参与者,人类蛋白激酶一直是癌症、免疫紊乱和阿尔茨海默病等复杂疾病药物靶点的研究热点,在过去 30 年中已经开发出 60 多种成功的药物。然而,许多这些单激酶抑制剂的疗效较低,并且已经出现耐药性问题。由于激酶家族内存在高度保守的催化位点和共享的信号通路,多靶标激酶抑制剂引起了人们的关注。
为了设计和鉴定这种泛激酶家族抑制剂(PKFI),我们使用 20 万个实验生物活性数据点为八个家族提出了 PKFI 集,并应用图卷积网络(GCN)构建分类模型。此外,我们利用可视化解释(即模型关注每个输入的位置)方法,即深度学习中的梯度加权类激活映射(Grad-CAM),来识别和提取家族敏感(仅存在于一个家族中)前体部分(完整部分的一部分)。
本研究首次提出了 PKFI 集,我们的结果指出并验证了 GCN 模型在理解不同激酶家族内和跨家族的 PKFI 前体部分方面的能力。此外,我们强调了在 PKFI 鉴定和药物设计中发现家族敏感前体部分的可能性。