Suppr超能文献

用于碱性析氢反应的协同增强单原子镍催化作用

Synergistically Enhanced Single-Atom Nickel Catalysis for Alkaline Hydrogen Evolution Reaction.

作者信息

Guo Jingya, Shang Wenzhe, Hu Jinwen, Xin Cuncun, Cheng Xusheng, Wei Jiazhen, Zhu Chao, Liu Wei, Shi Yantao

机构信息

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, 2 No. 4 Pailou, Nanjing 210096, China.

出版信息

ACS Appl Mater Interfaces. 2022 Jul 6;14(26):29822-29831. doi: 10.1021/acsami.2c05817. Epub 2022 Jun 22.

Abstract

The feature endowing atomic Ni-N-C electrocatalysts with exceptional intrinsic alkaline hydrogen evolution activity is hitherto not well-documented and remains elusive. To this end, we rationally exploited the hierarchical porous carbon microstructures as scaffolds to construct unique Ni-N-S active sites to boost the sluggish Volmer reaction kinetics. Density functional theory reveals an obvious d-band center (ϵ) upshift of the edge-hosted Ni-N-S sites compared with pristine Ni-N, which translates to a more stabilized OH adsorption. Moreover, the synergetic dual-site (Ni and S atom) interplay gives rise to a decoupled regulation of the adsorption strength of intermediate species (OH, H) and thereby energetic water dissociation kinetics. Bearing these in mind, sodium thiosulfate was deliberately adopted as an additive in the molten salt system for controllable synthesis, considering the simultaneous catalyst morphology and active-site modulation. The target Ni-N-S catalyst delivers a low working overpotential (83 mV@10 mA cm) and Tafel slope (100.5 mV dec) comparable to those of representative transition metal-based electrodes in alkaline media. The present study provides insights into the metal active-site geometry and promising synergistic effects over single-atom catalysis.

摘要

赋予原子级镍氮碳电催化剂卓越本征碱性析氢活性的特征,迄今尚未得到充分记录,仍然难以捉摸。为此,我们合理地利用分级多孔碳微结构作为支架,构建独特的镍氮硫活性位点,以加速迟缓的伏尔默反应动力学。密度泛函理论表明,与原始镍氮相比,边缘负载的镍氮硫位点的d带中心(ϵ)明显上移,这意味着氢氧根吸附更稳定。此外,协同双位点(镍和硫原子)相互作用导致中间物种(氢氧根、氢)吸附强度的解耦调节,从而加快了水离解动力学。考虑到同时对催化剂形态和活性位点进行调控,在熔盐体系中特意采用硫代硫酸钠作为添加剂进行可控合成。目标镍氮硫催化剂在碱性介质中具有低工作过电位(83 mV@10 mA cm)和塔菲尔斜率(100.5 mV dec),与代表性的过渡金属基电极相当。本研究为金属活性位点几何结构以及单原子催化中有望实现的协同效应提供了见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验