Suppr超能文献

使用统一大脑结构与功能的最大熵模型推断兴奋-抑制动力学。

Inferring excitation-inhibition dynamics using a maximum entropy model unifying brain structure and function.

作者信息

Fortel Igor, Butler Mitchell, Korthauer Laura E, Zhan Liang, Ajilore Olusola, Sidiropoulos Anastasios, Wu Yichao, Driscoll Ira, Schonfeld Dan, Leow Alex

机构信息

Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.

Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.

出版信息

Netw Neurosci. 2022 Jun 1;6(2):420-444. doi: 10.1162/netn_a_00220. eCollection 2022 Jun.

Abstract

Neural activity coordinated across different scales from neuronal circuits to large-scale brain networks gives rise to complex cognitive functions. Bridging the gap between micro- and macroscale processes, we present a novel framework based on the maximum entropy model to infer a hybrid resting-state structural connectome, representing functional interactions constrained by structural connectivity. We demonstrate that the structurally informed network outperforms the unconstrained model in simulating brain dynamics, wherein by constraining the inference model with the network structure we may improve the estimation of pairwise BOLD signal interactions. Further, we simulate brain network dynamics using Monte Carlo simulations with the new hybrid connectome to probe connectome-level differences in excitation-inhibition balance between apolipoprotein E (APOE)-ε4 carriers and noncarriers. Our results reveal sex differences among APOE-ε4 carriers in functional dynamics at criticality; specifically, female carriers appear to exhibit a lower tolerance to network disruptions resulting from increased excitatory interactions. In sum, the new multimodal network explored here enables analysis of brain dynamics through the integration of structure and function, providing insight into the complex interactions underlying neural activity such as the balance of excitation and inhibition.

摘要

从神经元回路到大规模脑网络,跨不同尺度协调的神经活动产生了复杂的认知功能。为了弥合微观和宏观过程之间的差距,我们提出了一个基于最大熵模型的新框架,以推断一个混合静息态结构连接组,该连接组代表受结构连接性约束的功能相互作用。我们证明,在模拟脑动力学方面,结构信息网络优于无约束模型,其中通过用网络结构约束推理模型,我们可以改进对成对BOLD信号相互作用的估计。此外,我们使用新的混合连接组通过蒙特卡罗模拟来模拟脑网络动力学,以探究载脂蛋白E(APOE)-ε4携带者和非携带者之间在兴奋-抑制平衡方面的连接组水平差异。我们的结果揭示了APOE-ε4携带者在临界状态下功能动力学的性别差异;具体而言,女性携带者似乎对兴奋性相互作用增加导致的网络破坏表现出较低的耐受性。总之,这里探索的新的多模态网络能够通过整合结构和功能来分析脑动力学,为神经活动背后的复杂相互作用(如兴奋与抑制的平衡)提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43a/9205431/946b710ab77d/netn-06-420-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验