Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
Commun Biol. 2021 Feb 16;4(1):210. doi: 10.1038/s42003-021-01700-6.
A major challenge in neuroscience is determining a quantitative relationship between the brain's white matter structural connectivity and emergent activity. We seek to uncover the intrinsic relationship among brain regions fundamental to their functional activity by constructing a pairwise maximum entropy model (MEM) of the inter-ictal activation patterns of five patients with medically refractory epilepsy over an average of ~14 hours of band-passed intracranial EEG (iEEG) recordings per patient. We find that the pairwise MEM accurately predicts iEEG electrodes' activation patterns' probability and their pairwise correlations. We demonstrate that the estimated pairwise MEM's interaction weights predict structural connectivity and its strength over several frequencies significantly beyond what is expected based solely on sampled regions' distance in most patients. Together, the pairwise MEM offers a framework for explaining iEEG functional connectivity and provides insight into how the brain's structural connectome gives rise to large-scale activation patterns by promoting co-activation between connected structures.
神经科学的一个主要挑战是确定大脑白质结构连接与涌现活动之间的定量关系。我们通过构建五个患有药物难治性癫痫的患者在平均约 14 小时的带通颅内 EEG(iEEG)记录期间的发作间期激活模式的成对最大熵模型(MEM),旨在揭示对其功能活动至关重要的脑区之间的内在关系。我们发现,成对 MEM 可以准确地预测 iEEG 电极的激活模式概率及其成对相关性。我们证明,估计的成对 MEM 的相互作用权重可以预测结构连接及其在多个频率上的强度,这在大多数患者中远远超出了仅基于采样区域距离的预期。总的来说,成对 MEM 为解释 iEEG 功能连接提供了一个框架,并深入了解大脑的结构连接组如何通过促进连接结构之间的共同激活来产生大规模的激活模式。