Suppr超能文献

基于粒子群模型驱动的神经网络的旅游信息管理系统。

Tourism Information Management System Using Neural Networks Driven by Particle Swarm Model.

机构信息

School of International Hospitality Management, University of Sanya, Sanya 572022, China.

Research Institution of Hainan Silk Road Commercial Civilization, University of Sanya, Sanya 572022, China.

出版信息

Comput Intell Neurosci. 2022 Jun 13;2022:6386360. doi: 10.1155/2022/6386360. eCollection 2022.

Abstract

Based on the concept of "smart tourism," this paper designs and implements a tourism management information system based on PSO-optimized NN. The foreground tourism web page of the system adopts DIV + CSS mode for page planning and layout, PHP as the client script language, and SQL server as the database to store and analyze user information. At the same time, the system adds personalized components to the user's search ranking results, so that the routes and scenic spots presented in front of users in the result interface are more in line with users' consumption habits. In order to verify the performance of the model and algorithm constructed in this paper, several experiments were carried out in this paper. Experimental results show that the prediction accuracy of this algorithm is 94.67% and the recall rate is 96.11%. This algorithm can overcome the disadvantages of traditional algorithms and provide some effective suggestions for tourism management. At the same time, this paper applies the concept of "smart tourism" to specific tourism informatization, which can promote the transformation and upgrading of tourism industry structure and further enhance the overall development level of tourism industry.

摘要

基于“智慧旅游”理念,本文设计并实现了一个基于 PSO 优化 NN 的旅游管理信息系统。系统的前台旅游网页采用 DIV+CSS 模式进行页面规划和布局,使用 PHP 作为客户端脚本语言,以 SQL server 作为数据库来存储和分析用户信息。同时,系统为用户的搜索排名结果添加个性化组件,使用户在结果界面中看到的路线和景点更符合用户的消费习惯。为了验证本文构建的模型和算法的性能,本文进行了多次实验。实验结果表明,该算法的预测准确率为 94.67%,召回率为 96.11%。该算法能够克服传统算法的缺点,为旅游管理提供一些有效的建议。同时,本文将“智慧旅游”理念应用于具体的旅游信息化中,能够促进旅游产业结构的转型和升级,进一步提升旅游产业的整体发展水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849a/9208917/c070a412f94c/CIN2022-6386360.001.jpg

相似文献

8
Tourism Management Strategies under the Intelligent Tourism IoT Service Platform.智能旅游物联网服务平台下的旅游管理策略。
Comput Intell Neurosci. 2022 Apr 12;2022:7750098. doi: 10.1155/2022/7750098. eCollection 2022.

引用本文的文献

1
Artificial intelligence in the tourism business: a systematic review.旅游业中的人工智能:一项系统综述。
Front Artif Intell. 2025 Jul 25;8:1599391. doi: 10.3389/frai.2025.1599391. eCollection 2025.

本文引用的文献

1
Aircraft Image Recognition Network Based on Hybrid Attention Mechanism.基于混合注意力机制的飞机图像识别网络
Comput Intell Neurosci. 2022 Apr 18;2022:4189500. doi: 10.1155/2022/4189500. eCollection 2022.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验