Suppr超能文献

基于长短时记忆网络(LSTM)的旅游安全预警信息系统优化算法。

Optimization Algorithm of Tourism Security Early Warning Information System Based on Long Short-Term Memory (LSTM).

机构信息

School of Management, Wuhan University of Technology, Wuhan 400070, China.

School of Economics and Management, Tibet University, Lhasa 850000, China.

出版信息

Comput Intell Neurosci. 2021 Sep 8;2021:9984003. doi: 10.1155/2021/9984003. eCollection 2021.

Abstract

Tourism safety is the focus of the tourism industry. It is not only related to the safety of tourists' lives and property, but also related to social stability and sustainable development of the tourism industry. However, the security early warning of many scenic spots focuses on the response measures and remedial plans after the occurrence of security incidents, and the staff of many scenic spots have limited security awareness and information analysis ability, which is prone to lag in information release, and do not pay attention to the information of potential security problems. Therefore, this paper studies the optimization algorithm of the tourism security early warning information system based on the LSTM model and uses the recurrent neural network and LSTM to improve the processing and prediction ability of time-series data. The experimental results show that the number of three hidden layers in the tourism security early warning information system based on the LSTM model can reduce the training time of the model and improve the performance. Compared with the tourism safety early warning information system based on the BP neural network, it has better accuracy and stability, has better processing and prediction ability for time series data, and can monitor and analyze data scientifically in real-time and dynamically analyze data.

摘要

旅游安全是旅游业的重点。它不仅关系到游客的生命财产安全,还关系到社会稳定和旅游业的可持续发展。然而,许多景点的安全预警工作侧重于安全事件发生后的应对措施和补救计划,许多景点的工作人员安全意识和信息分析能力有限,容易导致信息发布滞后,不重视潜在安全问题的信息。因此,本文研究了基于 LSTM 模型的旅游安全预警信息系统的优化算法,并利用递归神经网络和 LSTM 提高了时间序列数据的处理和预测能力。实验结果表明,基于 LSTM 模型的旅游安全预警信息系统中的三层隐藏层数量可以减少模型的训练时间并提高性能。与基于 BP 神经网络的旅游安全预警信息系统相比,它具有更好的准确性和稳定性,对时间序列数据具有更好的处理和预测能力,可以实时科学地监控和分析数据,并动态分析数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9f2/8443355/3488995bc748/CIN2021-9984003.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验