Kim John T, Di Long, Etame Arnold B, Olson Sarah, Vogelbaum Michael A, Tran Nam D
Department of Neurosurgery, University of South Florida, Tampa, Florida; and.
Department of Neuro-Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida.
J Neurosurg Case Lessons. 2022 Jun 13;3(24):CASE21683. doi: 10.3171/CASE21683.
BACKGROUND: Maximal safe resection is the paramount objective in the surgical management of malignant brain tumors. It is facilitated through use of image-guided neuronavigation. Intraoperative image guidance systems use preoperative magnetic resonance imaging (MRI) as the navigational map. The accuracy of neuronavigation is limited by intraoperative brain shift and can become less accurate over the course of the procedure. Intraoperative MRI can compensate for dynamic brain shift but requires significant space and capital investment, often unavailable at many centers. OBSERVATIONS: The authors described a case in which an image fusion algorithm was used in conjunction with an intraoperative computed tomography (CT) system to compensate for brain shift during resection of a brainstem hemorrhagic melanoma metastasis. Following initial debulking of the hemorrhagic metastasis, intraoperative CT was performed to ascertain extent of resection. An elastic image fusion (EIF) algorithm was used to create virtual MRI relative to both the intraoperative CT scan and preoperative MRI, which facilitated complete resection of the tumor while preserving critical brainstem anatomy. LESSONS: EIF algorithms can be used with multimodal images (preoperative MRI and intraoperative CT) and create an updated virtual MRI data set to compensate for brain shift in neurosurgery and aid in maximum safe resection of malignant brain tumors.
背景:最大程度的安全切除是恶性脑肿瘤外科治疗的首要目标。借助图像引导神经导航可促进这一目标的实现。术中图像引导系统使用术前磁共振成像(MRI)作为导航地图。神经导航的准确性受术中脑移位限制,且在手术过程中可能会变得不那么准确。术中MRI可补偿动态脑移位,但需要大量空间和资金投入,许多中心往往无法提供。 观察结果:作者描述了一例在切除脑干出血性黑色素瘤转移灶过程中,将图像融合算法与术中计算机断层扫描(CT)系统结合使用以补偿脑移位的病例。在对出血性转移灶进行初步减压后,进行术中CT以确定切除范围。使用弹性图像融合(EIF)算法相对于术中CT扫描和术前MRI创建虚拟MRI,这有助于在保留关键脑干解剖结构的同时完整切除肿瘤。 经验教训:EIF算法可与多模态图像(术前MRI和术中CT)一起使用,并创建更新的虚拟MRI数据集,以补偿神经外科手术中的脑移位,并有助于最大程度安全切除恶性脑肿瘤。
J Neurosurg Case Lessons. 2022-6-13
Oper Neurosurg (Hagerstown). 2020-5-1
Adv Tech Stand Neurosurg. 2024
J Clin Neurosci. 2020-3
Oper Neurosurg (Hagerstown). 2020-5-1
Med Image Anal. 2016-8-24
Expert Rev Med Devices. 2012-9