Gerhardt Julia, Sollmann Nico, Hiepe Patrick, Kirschke Jan S, Meyer Bernhard, Krieg Sandro M, Ringel Florian
Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
Clin Neurol Neurosurg. 2019 Aug;183:105387. doi: 10.1016/j.clineuro.2019.105387. Epub 2019 Jun 10.
Diffusion tensor imaging (DTI) based on echo-planar imaging (EPI) can suffer from geometric image distortions in comparison to conventional anatomical magnetic resonance imaging (MRI). Therefore, DTI-derived information, such as fiber tractography (FT) used for treatment planning of brain tumors, might be associated with spatial inaccuracies when linearly projected on anatomical MRI. Hence, a non-linear, semi-elastic image fusion shall be evaluated in this study that aims at correcting for image distortions in DTI.
In a sample of 27 patient datasets, 614 anatomical landmark pairs were retrospectively defined in DTI and T1- or T2-weighted three-dimensional (3D) MRI data. The datasets were processed by a commercial software package (Elements Image Fusion .0; Brainlab AG, Munich, Germany) providing rigid and semi-elastic fusion functionalities, such as DTI distortion correction. To quantify the displacement prior to and after semi-elastic fusion, the Euclidian distances of rigidly and elastically fused landmarks were evaluated by means of descriptive statistics and Bland-Altman plot.
For rigid and semi-elastic fusion mean target registration errors of 3.03 ± 2.29 mm and 2.04 ± 1.95 mm were found, respectively, with 91% of the evaluated landmarks moving closer to their position determined in T1- or T2-weighted 3D MRI data after distortion correction. Most efficient correction was achieved for non-superficial landmarks showing distortions up to 1 cm.
This study indicates that semi-elastic image fusion can be used for retrospective distortion correction of DTI data acquired for image guidance, such as DTI FT as used for a broad range of clinical indications.
与传统解剖磁共振成像(MRI)相比,基于回波平面成像(EPI)的扩散张量成像(DTI)可能会出现几何图像失真。因此,当将DTI衍生信息(如用于脑肿瘤治疗计划的纤维束成像(FT))线性投影到解剖MRI上时,可能会存在空间不准确的情况。因此,本研究将评估一种非线性、半弹性图像融合方法,旨在校正DTI中的图像失真。
在27例患者数据集样本中,回顾性地在DTI以及T1加权或T2加权三维(3D)MRI数据中定义了614对解剖标志点。这些数据集由一个商业软件包(Elements Image Fusion.0;Brainlab AG,德国慕尼黑)进行处理,该软件包提供刚性和半弹性融合功能,如DTI失真校正。为了量化半弹性融合前后的位移,通过描述性统计和Bland-Altman图评估刚性和弹性融合标志点的欧几里得距离。
对于刚性融合和半弹性融合,平均目标配准误差分别为3.03±2.29毫米和2.04±1.95毫米,91%的评估标志点在失真校正后更接近其在T1加权或T2加权3D MRI数据中确定的位置。对于失真高达1厘米的非表面标志点,校正效果最为显著。
本研究表明,半弹性图像融合可用于对为图像引导而采集的DTI数据进行回顾性失真校正,例如用于广泛临床指征的DTI纤维束成像。