Suppr超能文献

使用药物诱导睡眠内镜、清醒鼻内镜和计算流体动力学进行多模态表型标记,预测下颌前伸装置治疗效果的前瞻性研究。

Multimodal phenotypic labelling using drug-induced sleep endoscopy, awake nasendoscopy and computational fluid dynamics for the prediction of mandibular advancement device treatment outcome: a prospective study.

机构信息

Faculty of Medicine and health Sciences, University of Antwerp, Wilrijk, Belgium.

ENT, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium.

出版信息

J Sleep Res. 2022 Dec;31(6):e13673. doi: 10.1111/jsr.13673. Epub 2022 Jun 22.

Abstract

Mandibular advancement device (MAD) treatment outcome for obstructive sleep apnea (OSA) is variable and patient dependent. A global, clinically applicable predictive model is lacking. Our aim was to combine characteristics obtained during drug-induced sleep endoscopy (DISE), awake nasendoscopy, and computed tomography scan-based computational fluid dynamic (CFD) measurements in one multifactorial model, to explain MAD treatment outcome. A total of 100 patients with OSA were prospectively recruited and treated with a MAD at fixed 75% protrusion. In all, 72 underwent CFD analysis, DISE, and awake nasendoscopy at baseline in a blinded fashion and completed a 3-month follow-up polysomnography with a MAD. Treatment response was defined as a reduction in the apnea-hypopnea index (AHI) of ≥50% and deterioration as an increase of ≥10% during MAD treatment. To cope with missing data, multiple imputation with predictive mean matching was used. Multivariate logistic regression, adjusting for body mass index and baseline AHI, was used to combine all potential predictor variables. The strongest impact concerning odds ratios (ORs) was present for complete concentric palatal collapse (CCCp) during DISE on deterioration (OR 28.88, 95% confidence interval [CI] 1.18-704.35; p = 0.0391), followed by a C-shape versus an oval shape of the soft palate during wakefulness (OR 8.54, 95% CI 1.09-67.23; p = 0.0416) and tongue base collapse during DISE on response (OR 3.29, 95% CI 1.02-10.64; p = 0.0464). Both logistic regression models exhibited excellent and fair predictive accuracy. Our findings suggest DISE to be the most robust examination associated with MAD treatment outcome, with tongue base collapse as a predictor for successful MAD treatment and CCCp as an adverse DISE phenotype.

摘要

下颌前移装置(MAD)治疗阻塞性睡眠呼吸暂停(OSA)的效果因人而异。目前缺乏一种全球性的、临床适用的预测模型。我们的目的是将药物诱导睡眠内镜(DISE)、清醒鼻内镜和基于计算机断层扫描的计算流体动力学(CFD)测量中获得的特征结合到一个多因素模型中,以解释 MAD 治疗效果。共前瞻性招募了 100 名 OSA 患者,他们以固定的 75%突出度接受 MAD 治疗。共有 72 名患者接受了 CFD 分析、DISE 和清醒鼻内镜检查,并在基线时进行了盲法检查,然后在 3 个月的 MAD 治疗后完成了多导睡眠图监测。治疗反应定义为 MAD 治疗后呼吸暂停低通气指数(AHI)降低≥50%,恶化定义为增加≥10%。为了处理缺失数据,使用预测均值匹配的多重插补。使用多元逻辑回归,调整体重指数和基线 AHI,合并所有潜在预测变量。在 DISE 中,完全同心的腭部塌陷(CCCp)对恶化的影响最大(比值比 [OR] 28.88,95%置信区间 [CI] 1.18-704.35;p=0.0391),其次是清醒时软腭呈 C 形而不是椭圆形(OR 8.54,95% CI 1.09-67.23;p=0.0416)和 DISE 时舌基底塌陷对反应的影响(OR 3.29,95% CI 1.02-10.64;p=0.0464)。这两个逻辑回归模型均表现出良好的预测准确性。我们的研究结果表明,DISE 是与 MAD 治疗效果最相关的最稳健的检查,其中舌基底塌陷是 MAD 治疗成功的预测因子,CCCp 是不利的 DISE 表型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d918/10078177/2273efa9bb1f/JSR-31-0-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验