Department of Life Sciences, Barcelona Supercomputing Center, Carrer de Jordi Girona, 31, 08034, Barcelona, Spain.
Department of Applied Biocatalysis, ICP, CSIC, Marie Curie 2, 28049, Madrid, Spain.
Angew Chem Int Ed Engl. 2022 Sep 12;61(37):e202207344. doi: 10.1002/anie.202207344. Epub 2022 Aug 4.
Engineering dual-function single polypeptide catalysts with two abiotic or biotic catalytic entities (or combinations of both) supporting cascade reactions is becoming an important area of enzyme engineering and catalysis. Herein we present the development of a PluriZyme, TR E , with efficient native transaminase (k : 69.49±1.77 min ) and artificial esterase (k : 3908-0.41 min ) activities integrated into a single scaffold, and evaluate its utility in a cascade reaction. TR E (pH : 8.0-9.5; T : 60-65 °C) efficiently converts methyl 3-oxo-4-(2,4,5-trifluorophenyl)butanoate into 3-(R)-amino-4-(2,4,5-trifluorophenyl)butanoic acid, a crucial intermediate for the synthesis of antidiabetic drugs. The reaction proceeds through the conversion of the β-keto ester into the β-keto acid at the hydrolytic site and subsequently into the β-amino acid (e.e. >99 %) at the transaminase site. The catalytic power of the TR E PluriZyme was proven with a set of β-keto esters, demonstrating the potential of such designs to address bioinspired cascade reactions.
将具有两种非生物或生物催化实体(或两者的组合)的双功能单多肽催化剂用于支持级联反应,正在成为酶工程和催化的一个重要领域。本文介绍了一种 PluriZyme,TR E 的开发,它将高效的天然转氨酶(k :69.49±1.77 min)和人工酯酶(k :3908-0.41 min)活性集成到一个单一的支架中,并评估了其在级联反应中的应用。TR E(pH:8.0-9.5;T:60-65°C)有效地将甲基 3-氧代-4-(2,4,5-三氟苯基)丁酸酯转化为 3-(R)-氨基-4-(2,4,5-三氟苯基)丁酸,这是合成抗糖尿病药物的关键中间体。反应通过在水解部位将β-酮酯转化为β-酮酸,然后在转氨酶部位转化为β-氨基酸(ee 值>99%)进行。TR E PluriZyme 的催化能力通过一系列β-酮酯得到了证明,证明了这种设计用于解决仿生级联反应的潜力。