Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.
DWI Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany.
Angew Chem Int Ed Engl. 2021 May 10;60(20):11448-11456. doi: 10.1002/anie.202101642. Epub 2021 Apr 7.
Biocatalysis for the synthesis of fine chemicals is highly attractive but usually requires organic (co-)solvents (OSs). However, native enzymes often have low activity and resistance in OSs and at elevated temperatures. Herein, we report a smart salt bridge design strategy for simultaneously improving OS resistance and thermostability of the model enzyme, Bacillus subtilits Lipase A (BSLA). We combined comprehensive experimental studies of 3450 BSLA variants and molecular dynamics simulations of 36 systems. Iterative recombination of four beneficial substitutions yielded superior resistant variants with up to 7.6-fold (D64K/D144K) improved resistance toward three OSs while exhibiting significant thermostability (thermal resistance up to 137-fold, and half-life up to 3.3-fold). Molecular dynamics simulations revealed that locally refined flexibility and strengthened hydration jointly govern the highly increased resistance in OSs and at 50-100 °C. The salt bridge redesign provides protein engineers with a powerful and likely general approach to design OSs- and/or thermal-resistant lipases and other α/β-hydrolases.
生物催化在精细化学品合成中极具吸引力,但通常需要使用有机(共)溶剂(OSs)。然而,天然酶在 OSs 和高温下通常活性和稳定性较低。在此,我们报告了一种智能盐桥设计策略,用于同时提高模型酶枯草芽孢杆菌脂肪酶 A(BSLA)对 OS 的抗性和热稳定性。我们结合了对 3450 个 BSLA 变体的综合实验研究和 36 个系统的分子动力学模拟。对四个有益取代的反复重组产生了具有更高抗性的变体,对三种 OS 的抗性提高了高达 7.6 倍(D64K/D144K),同时表现出显著的热稳定性(耐热性提高了 137 倍,半衰期提高了 3.3 倍)。分子动力学模拟表明,局部精细的灵活性和增强的水合作用共同控制了在 OSs 和 50-100°C 下的高抗性。该盐桥重新设计为蛋白质工程师提供了一种强大且可能通用的方法,用于设计对 OS 和/或热稳定的脂肪酶和其他 α/β-水解酶。