Suppr超能文献

酶表面上较少的不利盐桥导致更高的有机共溶剂抗性。

Less Unfavorable Salt Bridges on the Enzyme Surface Result in More Organic Cosolvent Resistance.

机构信息

Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.

DWI Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany.

出版信息

Angew Chem Int Ed Engl. 2021 May 10;60(20):11448-11456. doi: 10.1002/anie.202101642. Epub 2021 Apr 7.

Abstract

Biocatalysis for the synthesis of fine chemicals is highly attractive but usually requires organic (co-)solvents (OSs). However, native enzymes often have low activity and resistance in OSs and at elevated temperatures. Herein, we report a smart salt bridge design strategy for simultaneously improving OS resistance and thermostability of the model enzyme, Bacillus subtilits Lipase A (BSLA). We combined comprehensive experimental studies of 3450 BSLA variants and molecular dynamics simulations of 36 systems. Iterative recombination of four beneficial substitutions yielded superior resistant variants with up to 7.6-fold (D64K/D144K) improved resistance toward three OSs while exhibiting significant thermostability (thermal resistance up to 137-fold, and half-life up to 3.3-fold). Molecular dynamics simulations revealed that locally refined flexibility and strengthened hydration jointly govern the highly increased resistance in OSs and at 50-100 °C. The salt bridge redesign provides protein engineers with a powerful and likely general approach to design OSs- and/or thermal-resistant lipases and other α/β-hydrolases.

摘要

生物催化在精细化学品合成中极具吸引力,但通常需要使用有机(共)溶剂(OSs)。然而,天然酶在 OSs 和高温下通常活性和稳定性较低。在此,我们报告了一种智能盐桥设计策略,用于同时提高模型酶枯草芽孢杆菌脂肪酶 A(BSLA)对 OS 的抗性和热稳定性。我们结合了对 3450 个 BSLA 变体的综合实验研究和 36 个系统的分子动力学模拟。对四个有益取代的反复重组产生了具有更高抗性的变体,对三种 OS 的抗性提高了高达 7.6 倍(D64K/D144K),同时表现出显著的热稳定性(耐热性提高了 137 倍,半衰期提高了 3.3 倍)。分子动力学模拟表明,局部精细的灵活性和增强的水合作用共同控制了在 OSs 和 50-100°C 下的高抗性。该盐桥重新设计为蛋白质工程师提供了一种强大且可能通用的方法,用于设计对 OS 和/或热稳定的脂肪酶和其他 α/β-水解酶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d97/8252522/b4c411f6c254/ANIE-60-11448-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验