United States Department of Agriculture, Water Management and Systems Research Unit, Agricultural Research Service, Fort Collins, Colorado, USA.
Department of Geography & Department of Environment and Sustainability, University at Buffalo, Buffalo, New York, USA.
Plant Cell Environ. 2022 Sep;45(9):2554-2572. doi: 10.1111/pce.14382. Epub 2022 Jul 7.
Plant function arises from a complex network of structural and physiological traits. Explicit representation of these traits, as well as their connections with other biophysical processes, is required to advance our understanding of plant-soil-climate interactions. We used the Terrestrial Regional Ecosystem Exchange Simulator (TREES) to evaluate physiological trait networks in maize. Net primary productivity (NPP) and grain yield were simulated across five contrasting climate scenarios. Simulations achieving high NPP and grain yield in high precipitation environments featured trait networks conferring high water use strategies: deep roots, high stomatal conductance at low water potential ("risky" stomatal regulation), high xylem hydraulic conductivity and high maximal leaf area index. In contrast, high NPP and grain yield was achieved in dry environments with low late-season precipitation via water conserving trait networks: deep roots, high embolism resistance and low stomatal conductance at low leaf water potential ("conservative" stomatal regulation). We suggest that our approach, which allows for the simultaneous evaluation of physiological traits, soil characteristics and their interactions (i.e., networks), has potential to improve our understanding of crop performance in different environments. In contrast, evaluating single traits in isolation of other coordinated traits does not appear to be an effective strategy for predicting plant performance.
植物功能源自于结构和生理特征的复杂网络。为了深入理解植物-土壤-气候相互作用,需要明确表示这些特征及其与其他生物物理过程的联系。我们使用陆地区域生态系统交换模拟器(TREES)来评估玉米中的生理特征网络。在五个不同的气候情景下模拟了净初级生产力(NPP)和谷物产量。在高降水环境中实现高 NPP 和谷物产量的模拟具有赋予高水分利用策略的特征网络:深根、低水分势下高气孔导度(“冒险”的气孔调节)、高木质部导度和高最大叶面积指数。相比之下,在降水较少的干旱环境中,通过节水特征网络实现了高 NPP 和谷物产量:深根、高栓塞抗性和低叶片水分势下的低气孔导度(“保守”的气孔调节)。我们认为,我们的方法允许同时评估生理特征、土壤特性及其相互作用(即网络),有可能提高我们对不同环境中作物性能的理解。相比之下,孤立地评估单个特征而不考虑其他协调特征似乎不是预测植物性能的有效策略。