Suppr超能文献

基于阴道镜图像的简化卷积神经网络在宫颈类型分类中的应用

Simplified Convolutional Neural Network Application for Cervix Type Classification via Colposcopic Images.

作者信息

Pavlov Vitalii, Fyodorov Stanislav, Zavjalov Sergey, Pervunina Tatiana, Govorov Igor, Komlichenko Eduard, Deynega Viktor, Artemenko Veronika

机构信息

Higher School of Applied Physics and Space Technologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia.

Personalised Medicine Centre, 197341 St. Petersburg, Russia.

出版信息

Bioengineering (Basel). 2022 May 30;9(6):240. doi: 10.3390/bioengineering9060240.

Abstract

The inner parts of the human body are usually inspected endoscopically using special equipment. For instance, each part of the female reproductive system can be examined endoscopically (laparoscopy, hysteroscopy, and colposcopy). The primary purpose of colposcopy is the early detection of malignant lesions of the cervix. Cervical cancer (CC) is one of the most common cancers in women worldwide, especially in middle- and low-income countries. Therefore, there is a growing demand for approaches that aim to detect precancerous lesions, ideally without quality loss. Despite its high efficiency, this method has some disadvantages, including subjectivity and pronounced dependence on the operator's experience. The objective of the current work is to propose an alternative to overcoming these limitations by utilizing the neural network approach. The classifier is trained to recognize and classify lesions. The classifier has a high recognition accuracy and a low computational complexity. The classification accuracies for the classes normal, LSIL, HSIL, and suspicious for invasion were 95.46%, 79.78%, 94.16%, and 97.09%, respectively. We argue that the proposed architecture is simpler than those discussed in other articles due to the use of the global averaging level of the pool. Therefore, the classifier can be implemented on low-power computing platforms at a reasonable cost.

摘要

人体内部通常使用特殊设备通过内窥镜进行检查。例如,女性生殖系统的每个部位都可以通过内窥镜进行检查(腹腔镜检查、宫腔镜检查和阴道镜检查)。阴道镜检查的主要目的是早期发现子宫颈的恶性病变。宫颈癌(CC)是全球女性中最常见的癌症之一,尤其是在中低收入国家。因此,对于旨在检测癌前病变的方法的需求日益增长,理想情况下不损失质量。尽管该方法效率很高,但也有一些缺点,包括主观性以及对操作者经验的明显依赖。当前工作的目的是提出一种利用神经网络方法来克服这些局限性的替代方案。分类器经过训练以识别和分类病变。该分类器具有较高的识别准确率和较低的计算复杂度。正常、低度鳞状上皮内病变(LSIL)、高度鳞状上皮内病变(HSIL)和可疑浸润类别的分类准确率分别为95.46%、79.78%、94.16%和97.09%。我们认为,由于使用了池化的全局平均层,所提出的架构比其他文章中讨论的架构更简单。因此,该分类器可以以合理的成本在低功耗计算平台上实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f167/9219648/936a643e039c/bioengineering-09-00240-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验