Department of Pathology and Microbiology, University of Nebraska Medical Centergrid.266813.8, Omaha, Nebraska, USA.
Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Centergrid.266813.8, Omaha, Nebraska, USA.
J Bacteriol. 2022 Jul 19;204(7):e0061721. doi: 10.1128/jb.00617-21. Epub 2022 Jun 23.
Staphylococcus aureus is a medically important pathogen with high metabolic versatility allowing it to infect various niches within a host. S. aureus utilizes two major transcriptional regulators, namely, CodY and CcpA, to remodel metabolic and virulence gene expression in response to changing environmental conditions. Previous studies revealed that inactivation of either or has a pronounced impact on different aspects of staphylococcal physiology and pathogenesis. To determine the contribution and interplay of these two regulators in modulating central metabolism, virulence, and biofilm development, we constructed and characterized the double mutant in S. aureus UAMS-1. In line with previous studies, we found that CcpA and CodY control the cellular metabolic status by altering carbon flux through the central and overflow metabolic pathways. Our results demonstrate that inactivation impairs biofilm formation and decreases incorporation of extracellular DNA (eDNA) into the biofilm matrix, whereas disrupting resulted in a robust structured biofilm tethered together with eDNA and polysaccharide intercellular adhesin (PIA). Interestingly, inactivation of both and decreases biofilm biomass and reduces eDNA release in the double mutant. Compared with the inactivation of , the mutant did not overexpress toxins but maintained overexpression of amino acid metabolism pathways. Furthermore, the mutant produced large amounts of PIA, in contrast to the wild-type strain and mutant. Combined, the results of this study suggest that the coordinated action of CodY and CcpA modulate central metabolism, virulence gene expression, and biofilm-associated genes to optimize growth on preferred carbon sources until starvation sets in. Staphylococcus aureus is a leading cause of biofilm-associated infections, including infective endocarditis, worldwide. A greater understanding of metabolic forces driving biofilm formation in S. aureus is essential for the identification of novel therapeutic targets and for the development of new strategies to combat this medically important pathogen. This study characterizes the interplay and regulation of central metabolism and biofilm development by two global transcriptional regulators, CodY and CcpA. We found that the lack of CcpA and/or CodY have different impacts on intracellular metabolic status leading to a formation of morphologically altered biofilms. Overall, the results of this study provide new insights into our understanding of metabolism-mediated regulation of biofilm development in S. aureus.
金黄色葡萄球菌是一种具有高度代谢多功能性的重要医学病原体,能够感染宿主内的各种小生境。金黄色葡萄球菌利用两种主要的转录调节因子,即 CodY 和 CcpA,根据环境条件的变化重塑代谢和毒力基因表达。先前的研究表明,或 的失活对葡萄球菌生理学和发病机制的不同方面都有显著影响。为了确定这两个调节剂在调节中心代谢、毒力和生物膜发育中的贡献和相互作用,我们构建并表征了金黄色葡萄球菌 UAMS-1 中的 双突变体。与先前的研究一致,我们发现 CcpA 和 CodY 通过改变中央和溢出代谢途径中的碳通量来控制细胞代谢状态。我们的结果表明,失活会损害生物膜的形成并减少细胞外 DNA(eDNA)掺入生物膜基质,而破坏 则导致与 eDNA 和多糖细胞间黏附素(PIA)一起紧密连接的刚性结构化生物膜。有趣的是,和 的双重失活会降低生物膜生物量并减少双突变体中的 eDNA 释放。与 失活相比, 突变体不会过度表达毒素,但仍保持氨基酸代谢途径的过度表达。此外, 突变体产生大量 PIA,与野生型菌株和 突变体形成对比。综合来看,这项研究的结果表明,CodY 和 CcpA 的协调作用调节中心代谢、毒力基因表达和生物膜相关基因,以优化对首选碳源的生长,直到饥饿发生。金黄色葡萄球菌是全球范围内生物膜相关感染(包括感染性心内膜炎)的主要原因。深入了解推动金黄色葡萄球菌生物膜形成的代谢力量对于确定新的治疗靶点以及开发对抗这种重要医学病原体的新策略至关重要。本研究描述了两种全局转录调节因子 CodY 和 CcpA 对中心代谢和生物膜发育的相互作用和调节。我们发现,缺乏 CcpA 和/或 CodY 对细胞内代谢状态有不同的影响,导致形态改变的生物膜形成。总的来说,这项研究的结果为我们理解金黄色葡萄球菌生物膜发育的代谢介导调控提供了新的见解。