Suppr超能文献

金黄色葡萄球菌中 CodY 介导的细胞聚集的遗传和生化分析揭示了细胞外基质中细胞外 DNA 和多糖之间的相互作用。

Genetic and Biochemical Analysis of CodY-Mediated Cell Aggregation in Staphylococcus aureus Reveals an Interaction between Extracellular DNA and Polysaccharide in the Extracellular Matrix.

机构信息

Department of Biology, Georgetown University, Washington, DC, USA.

Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.

出版信息

J Bacteriol. 2020 Mar 26;202(8). doi: 10.1128/JB.00593-19.

Abstract

The global regulator CodY links nutrient availability to the regulation of virulence factor gene expression in , including many genes whose products affect biofilm formation. Antithetical phenotypes of both biofilm deficiency and accumulation have been reported for -null mutants; thus, the role of CodY in biofilm development remains unclear. mutant cells of a strain producing a robust biofilm elaborate proaggregation surface-associated features not present on mutant cells that do not produce a robust biofilm. Biochemical analysis of the clinical isolate SA564, which aggregates when deficient for CodY, revealed that these features are sensitive to nuclease treatment and are resistant to protease exposure. Genetic analyses revealed that disrupting (the diacylglycerol transferase gene) in mutant cells severely weakened aggregation, indicating a role for lipoproteins in the attachment of the biofilm matrix to the cell surface. An additional and critical role of IcaB in producing functional poly--acetylglucosamine (PIA) polysaccharide in extracellular DNA (eDNA)-dependent biofilm formation was shown. Moreover, overproducing PIA is sufficient to promote aggregation in a DNA-dependent manner regardless of source of nucleic acids. Taken together, our results point to PIA synthesis as the primary determinant of biofilm formation when CodY activity is reduced and suggest a modified electrostatic net model for matrix attachment whereby PIA associates with eDNA, which interacts with the cell surface via covalently attached membrane lipoproteins. This work counters the prevailing view that polysaccharide- and eDNA/protein-based biofilms are mutually exclusive. Rather, we demonstrate that eDNA and PIA can work synergistically to form a biofilm. remains a global health concern and exemplifies the ability of an opportunistic pathogen to adapt and persist within multiple environments, including host tissue. Not only does biofilm contribute to persistence and immune evasion in the host environment, it also may aid in the transition to invasive disease. Thus, understanding how biofilms form is critical for developing strategies for dispersing biofilms and improving biofilm disease-related outcomes. Using biochemical, genetic, and cell biology approaches, we reveal a synergistic interaction between PIA and eDNA that promotes cell aggregation and biofilm formation in a CodY-dependent manner in We also reveal that envelope-associated lipoproteins mediate attachment of the biofilm matrix to the cell surface.

摘要

全球调控因子 CodY 将营养可用性与毒力因子基因表达的调控联系起来,包括许多影响生物膜形成的基因产物。-null 突变体表现出生物膜缺陷和积累的对偶表型;因此,CodY 在生物膜发育中的作用尚不清楚。产生强生物膜的菌株的-突变细胞详述了聚集表面相关的特征,而不产生强生物膜的-突变细胞则不存在这些特征。对临床分离株 SA564 的生化分析表明,当 CodY 缺乏时,这些特征对核酸酶处理敏感,对蛋白酶暴露具有抗性。遗传分析表明,在-突变细胞中破坏二酰基甘油转移酶基因()严重削弱了聚集作用,表明脂蛋白在生物膜基质与细胞表面的附着中起作用。还表明,IcaB 在产生功能性聚-乙酰葡萄糖胺(PIA)多糖和依赖于细胞外 DNA(eDNA)的生物膜形成中具有额外的和关键的作用。此外,无论核酸来源如何,过量产生 PIA 足以以 DNA 依赖的方式促进聚集。总之,我们的结果表明,当 CodY 活性降低时,PIA 合成是生物膜形成的主要决定因素,并提出了一种修饰的静电网模型,其中 PIA 与 eDNA 结合,eDNA 通过共价连接的膜脂蛋白与细胞表面相互作用。这项工作反驳了多糖和 eDNA/蛋白质生物膜相互排斥的普遍观点。相反,我们证明了 eDNA 和 PIA 可以协同形成生物膜。仍然是一个全球性的健康问题,它体现了机会致病菌适应和在包括宿主组织在内的多种环境中生存的能力。生物膜不仅有助于在宿主环境中持续存在和免疫逃避,而且可能有助于向侵袭性疾病的转变。因此,了解生物膜如何形成对于制定分散生物膜和改善与生物膜相关疾病结果的策略至关重要。我们使用生化、遗传和细胞生物学方法,揭示了 PIA 和 eDNA 之间的协同相互作用,以 CodY 依赖的方式促进了-中的细胞聚集和生物膜形成。我们还揭示了包膜相关脂蛋白介导生物膜基质与细胞表面的附着。

相似文献

2
Interplay of CodY and CcpA in Regulating Central Metabolism and Biofilm Formation in Staphylococcus aureus.
J Bacteriol. 2022 Jul 19;204(7):e0061721. doi: 10.1128/jb.00617-21. Epub 2022 Jun 23.
3
Identification of Extracellular DNA-Binding Proteins in the Biofilm Matrix.
mBio. 2019 Jun 25;10(3):e01137-19. doi: 10.1128/mBio.01137-19.
4
σ Inhibits Poly--Acetylglucosamine Exopolysaccharide Synthesis and Biofilm Formation in .
J Bacteriol. 2019 May 8;201(11). doi: 10.1128/JB.00098-19. Print 2019 Jun 1.
5
The small non-coding RNA RsaE influences extracellular matrix composition in Staphylococcus epidermidis biofilm communities.
PLoS Pathog. 2019 Mar 14;15(3):e1007618. doi: 10.1371/journal.ppat.1007618. eCollection 2019 Mar.
6
Host factors abolish the need for polysaccharides and extracellular matrix-binding protein in biofilm formation.
J Med Microbiol. 2021 Mar;70(3). doi: 10.1099/jmm.0.001287. Epub 2021 Jan 22.
7
Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects.
Front Cell Infect Microbiol. 2015 Feb 10;5:7. doi: 10.3389/fcimb.2015.00007. eCollection 2015.
9
An Electrostatic Net Model for the Role of Extracellular DNA in Biofilm Formation by Staphylococcus aureus.
J Bacteriol. 2015 Dec;197(24):3779-87. doi: 10.1128/JB.00726-15. Epub 2015 Sep 28.
10
Staphylococcus aureus CcpA affects biofilm formation.
Infect Immun. 2008 May;76(5):2044-50. doi: 10.1128/IAI.00035-08. Epub 2008 Mar 17.

引用本文的文献

1
Glycosylation of oral bacteria in modulating adhesion and biofilm formation.
J Oral Microbiol. 2025 Apr 8;17(1):2486650. doi: 10.1080/20002297.2025.2486650. eCollection 2025.
2
Release of extracellular DNA by sp. as a major determinant for biofilm switching and an early indicator for cell population control.
iScience. 2025 Feb 18;28(3):112063. doi: 10.1016/j.isci.2025.112063. eCollection 2025 Mar 21.
3
Staphylococcus epidermidis alters macrophage polarization and phagocytic uptake by extracellular DNA release in vitro.
NPJ Biofilms Microbiomes. 2024 Nov 20;10(1):131. doi: 10.1038/s41522-024-00604-7.
4
Dispersin B: The Quintessential Antibiofilm Enzyme.
Pathogens. 2024 Aug 7;13(8):668. doi: 10.3390/pathogens13080668.
5
Beyond the double helix: the multifaceted landscape of extracellular DNA in biofilms.
Front Cell Infect Microbiol. 2024 Jun 5;14:1400648. doi: 10.3389/fcimb.2024.1400648. eCollection 2024.
6
The pathogenicity and virulence of the opportunistic pathogen .
Virulence. 2024 Dec;15(1):2359483. doi: 10.1080/21505594.2024.2359483. Epub 2024 Jun 13.
7
Micrococcal nuclease regulates biofilm formation and dispersal in methicillin-resistant USA300.
mSphere. 2024 May 29;9(5):e0012624. doi: 10.1128/msphere.00126-24. Epub 2024 May 2.
8
Multitasking functions of bacterial extracellular DNA in biofilms.
J Bacteriol. 2024 Apr 18;206(4):e0000624. doi: 10.1128/jb.00006-24. Epub 2024 Mar 6.
9
Novel small-molecule compound YH7 inhibits the biofilm formation of in a -dependent manner.
mSphere. 2024 Jan 30;9(1):e0056423. doi: 10.1128/msphere.00564-23. Epub 2024 Jan 3.
10
How Do Phages Disrupt the Structure of Biofilm?
Int J Mol Sci. 2023 Dec 8;24(24):17260. doi: 10.3390/ijms242417260.

本文引用的文献

1
Identification of Extracellular DNA-Binding Proteins in the Biofilm Matrix.
mBio. 2019 Jun 25;10(3):e01137-19. doi: 10.1128/mBio.01137-19.
2
Virulence Factors Produced by Biofilms Have a Moonlighting Function Contributing to Biofilm Integrity.
Mol Cell Proteomics. 2019 Jun;18(6):1036-1053. doi: 10.1074/mcp.RA118.001120. Epub 2019 Mar 8.
4
Drosophila melanogaster as a polymicrobial infection model for Pseudomonas aeruginosa and Staphylococcus aureus.
J Microbiol. 2018 Aug;56(8):534-541. doi: 10.1007/s12275-018-8331-9. Epub 2018 Jul 25.
6
Nutritional Regulation of the Sae Two-Component System by CodY in Staphylococcus aureus.
J Bacteriol. 2018 Mar 26;200(8). doi: 10.1128/JB.00012-18. Print 2018 Apr 15.
7
Staphylococcal Adhesion and Host Cell Invasion: Fibronectin-Binding and Other Mechanisms.
Front Microbiol. 2017 Dec 5;8:2433. doi: 10.3389/fmicb.2017.02433. eCollection 2017.
9
Mechanisms and Regulation of Extracellular DNA Release and Its Biological Roles in Microbial Communities.
Front Microbiol. 2017 Jul 26;8:1390. doi: 10.3389/fmicb.2017.01390. eCollection 2017.
10
Genome-wide screen for genes involved in eDNA release during biofilm formation by .
Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):E5969-E5978. doi: 10.1073/pnas.1704544114. Epub 2017 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验