Suppr超能文献

三羧酸循环中的一个热力学瓶颈导致了……中的乙酸盐溢出。

A thermodynamic bottleneck in the TCA cycle contributes to acetate overflow in .

作者信息

Shahreen Nabia, Ahn Jongsam, Alsiyabi Adil, Chowdhury Niaz Bahar, Shinde Dhananjay, Chaudhari Sujata S, Bayles Kenneth W, Thomas Vinai C, Saha Rajib

机构信息

Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.

Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA.

出版信息

mSphere. 2025 Jan 28;10(1):e0088324. doi: 10.1128/msphere.00883-24. Epub 2024 Dec 31.

Abstract

During aerobic growth, relies on acetate overflow metabolism, a process where glucose is incompletely oxidized to acetate, for its bioenergetic needs. Acetate is not immediately captured as a carbon source and is excreted as waste by cells. The underlying factors governing acetate overflow in have not been identified. Here, we show that acetate overflow is favored due to a thermodynamic bottleneck in the TCA cycle specifically involving the oxidation of succinate to fumarate by succinate dehydrogenase. This bottleneck reduces flux through the TCA cycle, making it more efficient for to generate ATP via acetate overflow metabolism. Additionally, the protein allocation cost of maintaining ATP flux through the restricted TCA cycle is greater than that of acetate overflow metabolism. Finally, we show that the TCA cycle bottleneck provides the flexibility to redirect carbon toward maintaining redox balance through lactate overflow when oxygen becomes limiting, albeit at the expense of ATP production through acetate overflow. Overall, our findings suggest that overflow metabolism offers distinct bioenergetic advantages over a thermodynamically constrained TCA cycle, potentially supporting its commensal-pathogenic lifestyle.

摘要

在有氧生长过程中,[具体生物名称未给出]依靠乙酸溢流代谢来满足其生物能量需求,乙酸溢流代谢是一个将葡萄糖不完全氧化为乙酸的过程。乙酸不会立即被捕获作为碳源,而是被细胞作为废物排出。尚未确定控制[具体生物名称未给出]中乙酸溢流的潜在因素。在这里,我们表明,由于三羧酸循环中的一个热力学瓶颈,特别是涉及琥珀酸脱氢酶将琥珀酸氧化为延胡索酸的过程,乙酸溢流受到青睐。这个瓶颈降低了通过三羧酸循环的通量,使得[具体生物名称未给出]通过乙酸溢流代谢产生ATP更有效率。此外,通过受限的三羧酸循环维持ATP通量的蛋白质分配成本高于乙酸溢流代谢。最后,我们表明,当氧气变得有限时,三羧酸循环瓶颈使[具体生物名称未给出]能够灵活地将碳重新导向通过乳酸溢流来维持氧化还原平衡,尽管这是以牺牲通过乙酸溢流产生ATP为代价的。总体而言,我们的研究结果表明,溢流代谢相对于热力学受限的三羧酸循环具有明显的生物能量优势,这可能支持其共生致病的生活方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/639f/11774044/99a14225a67b/msphere.00883-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验