Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States.
Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.
Anal Chem. 2022 Jul 5;94(26):9434-9441. doi: 10.1021/acs.analchem.2c01653. Epub 2022 Jun 23.
New developments in analytical technologies and biophysical methods have advanced the characterization of increasingly complex biomolecular assemblies using native mass spectrometry (MS). Ion mobility methods, in particular, have enabled a new dimension of structural information and analysis of proteins, allowing separation of conformations and providing size and shape insights based on collision cross sections (CCSs). Based on the concepts of absorption-mode Fourier transform (aFT) multiplexing ion mobility spectrometry (IMS), here, a modular drift tube design proves capable of separating native-like proteins up to 148 kDa with resolution up to 45. Coupled with high-resolution Orbitrap MS, binding of small ligands and cofactors can be resolved in the mass domain and correlated to changes in structural heterogeneity observed in the ion-neutral CCS distributions. We also demonstrate the ability to rapidly determine accurate CCSs for proteins with 1-min aFT-IMS-MS sweeps without the need for calibrants or correction factors.
分析技术和生物物理方法的新进展推动了使用天然质谱(MS)对日益复杂的生物分子组装体进行表征。特别是离子淌度方法,为蛋白质的结构信息和分析提供了一个新的维度,允许分离构象,并根据碰撞截面(CCS)提供大小和形状的见解。基于吸收模式傅里叶变换(aFT)多路复用离子淌度谱(IMS)的概念,在这里,模块化漂移管设计证明能够分离高达 148 kDa 的天然样蛋白质,分辨率高达 45。与高分辨率轨道阱 MS 耦合,小分子配体和辅因子的结合可以在质量域中得到解析,并与在离子-中性 CCS 分布中观察到的结构异质性变化相关联。我们还证明了在无需校准物或校正因子的情况下,通过 1 分钟的 aFT-IMS-MS 扫描即可快速确定蛋白质的准确 CCS 的能力。