Suppr超能文献

基于可变形形状模型的全局最优细胞分割的超可加性和凸优化。

Superadditivity and Convex Optimization for Globally Optimal Cell Segmentation Using Deformable Shape Models.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):3831-3847. doi: 10.1109/TPAMI.2022.3185583. Epub 2023 Feb 3.

Abstract

Cell nuclei segmentation is challenging due to shape variation and closely clustered or partially overlapping objects. Most previous methods are not globally optimal, limited to elliptical models, or are computationally expensive. In this work, we introduce a globally optimal approach based on deformable shape models and global energy minimization for cell nuclei segmentation and cluster splitting. We propose an implicit parameterization of deformable shape models and show that it leads to a convex energy. Convex energy minimization yields the global solution independently of the initialization, is fast, and robust. To jointly perform cell nuclei segmentation and cluster splitting, we developed a novel iterative global energy minimization method, which leverages the inherent property of superadditivity of the convex energy. This property exploits the lower bound of the energy of the union of the models and improves the computational efficiency. Our method provably determines a solution close to global optimality. In addition, we derive a closed-form solution of the proposed global minimization based on the superadditivity property for non-clustered cell nuclei. We evaluated our method using fluorescence microscopy images of five different cell types comprising various challenges, and performed a quantitative comparison with previous methods. Our method achieved state-of-the-art or improved performance.

摘要

细胞核分割具有挑战性,因为形状变化和紧密聚集或部分重叠的对象。大多数以前的方法不是全局最优的,局限于椭圆模型,或者计算成本高。在这项工作中,我们引入了一种基于可变形形状模型和全局能量最小化的全局最优方法,用于细胞核分割和聚类分裂。我们提出了一种可变形形状模型的隐式参数化,并表明它导致了凸能量。凸能量最小化独立于初始化产生全局解,快速且鲁棒。为了联合进行细胞核分割和聚类分裂,我们开发了一种新的迭代全局能量最小化方法,该方法利用了凸能量的可加性的内在性质。该性质利用了模型并集的能量下限,提高了计算效率。我们的方法可以证明确定接近全局最优的解决方案。此外,我们基于凸能量的可加性为非聚类细胞核导出了所提出的全局最小化的闭式解。我们使用包含各种挑战的五种不同细胞类型的荧光显微镜图像评估了我们的方法,并与以前的方法进行了定量比较。我们的方法达到了或提高了现有技术的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验