Suppr超能文献

通过凸松弛分布匹配进行 MRI 中的左心室分割。

Left ventricle segmentation in MRI via convex relaxed distribution matching.

机构信息

Western University, London, Ontario, Canada; Robarts Research Institute, London, ON, Canada.

出版信息

Med Image Anal. 2013 Dec;17(8):1010-24. doi: 10.1016/j.media.2013.05.002. Epub 2013 Jun 10.

Abstract

A fundamental step in the diagnosis of cardiovascular diseases, automatic left ventricle (LV) segmentation in cardiac magnetic resonance images (MRIs) is still acknowledged to be a difficult problem. Most of the existing algorithms require either extensive training or intensive user inputs. This study investigates fast detection of the left ventricle (LV) endo- and epicardium surfaces in cardiac MRI via convex relaxation and distribution matching. The algorithm requires a single subject for training and a very simple user input, which amounts to a single point (mouse click) per target region (cavity or myocardium). It seeks cavity and myocardium regions within each 3D phase by optimizing two functionals, each containing two distribution-matching constraints: (1) a distance-based shape prior and (2) an intensity prior. Based on a global measure of similarity between distributions, the shape prior is intrinsically invariant with respect to translation and rotation. We further introduce a scale variable from which we derive a fixed-point equation (FPE), thereby achieving scale-invariance with only few fast computations. The proposed algorithm relaxes the need for costly pose estimation (or registration) procedures and large training sets, and can tolerate shape deformations, unlike template (or atlas) based priors. Our formulation leads to a challenging problem, which is not directly amenable to convex-optimization techniques. For each functional, we split the problem into a sequence of sub-problems, each of which can be solved exactly and globally via a convex relaxation and the augmented Lagrangian method. Unlike related graph-cut approaches, the proposed convex-relaxation solution can be parallelized to reduce substantially the computational time for 3D domains (or higher), extends directly to high dimensions, and does not have the grid-bias problem. Our parallelized implementation on a graphics processing unit (GPU) demonstrates that the proposed algorithm requires about 3.87 s for a typical cardiac MRI volume, a speed-up of about five times compared to a standard implementation. We report a performance evaluation over 400 volumes acquired from 20 subjects, which shows that the obtained 3D surfaces correlate with independent manual delineations. We further demonstrate experimentally that (1) the performance of the algorithm is not significantly affected by the choice of the training subject and (2) the shape description we use does not change significantly from one subject to another. These results support the fact that a single subject is sufficient for training the proposed algorithm.

摘要

心血管疾病诊断的一个基本步骤是自动分割心脏磁共振图像(MRI)中的左心室(LV),这仍然被认为是一个难题。现有的大多数算法要么需要广泛的训练,要么需要密集的用户输入。本研究通过凸松弛和分布匹配来快速检测心脏 MRI 中的左心室(LV)内、外膜表面。该算法仅需要一个主体进行训练,并且仅需要非常简单的用户输入,即每个目标区域(腔或心肌)输入一个点(鼠标点击)。它通过优化两个功能函数来寻找每个 3D 相位中的腔和心肌区域,每个功能函数都包含两个分布匹配约束:(1)基于距离的形状先验和(2)强度先验。基于分布之间的全局相似性度量,形状先验本质上是平移和旋转不变的。我们进一步引入了一个比例变量,从中推导出一个定点方程(FPE),从而仅通过几次快速计算就实现了尺度不变性。所提出的算法不需要昂贵的姿态估计(或配准)过程和大型训练集,并且可以容忍形状变形,这与基于模板(或图谱)的先验不同。我们的公式导致了一个具有挑战性的问题,该问题不能直接通过凸优化技术来解决。对于每个功能函数,我们将问题分解为一系列子问题,每个子问题都可以通过凸松弛和增广拉格朗日方法精确地全局求解。与相关的图割方法不同,所提出的凸松弛解可以并行化,从而大大减少 3D 域(或更高)的计算时间,直接扩展到高维,并且没有网格偏差问题。我们在图形处理单元(GPU)上的并行实现表明,对于典型的心脏 MRI 体积,所提出的算法大约需要 3.87 秒,与标准实现相比速度提高了约五倍。我们在 20 名受试者的 400 多个容积上进行了性能评估,结果表明,所获得的 3D 表面与独立的手动描绘相关。我们进一步通过实验证明,(1)算法的性能不受训练主体选择的影响,(2)我们使用的形状描述在不同主体之间没有显著变化。这些结果支持了一个主体即可为所提出的算法提供训练的事实。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验