Suppr超能文献

使用预测模型偏倚风险评估工具(PROBAST)评估黑色素瘤预测研究。

Using the Prediction Model Risk of Bias Assessment Tool (PROBAST) to Evaluate Melanoma Prediction Studies.

作者信息

Kaiser Isabelle, Mathes Sonja, Pfahlberg Annette B, Uter Wolfgang, Berking Carola, Heppt Markus V, Steeb Theresa, Diehl Katharina, Gefeller Olaf

机构信息

Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.

Department of Dermatology and Allergy, Technische Universität München, 80802 München, Germany.

出版信息

Cancers (Basel). 2022 Jun 20;14(12):3033. doi: 10.3390/cancers14123033.

Abstract

Rising incidences of cutaneous melanoma have fueled the development of statistical models that predict individual melanoma risk. Our aim was to assess the validity of published prediction models for incident cutaneous melanoma using a standardized procedure based on PROBAST (Prediction model Risk Of Bias ASsessment Tool). We included studies that were identified by a recent systematic review and updated the literature search to ensure that our PROBAST rating included all relevant studies. Six reviewers assessed the risk of bias (ROB) for each study using the published "PROBAST Assessment Form" that consists of four domains and an overall ROB rating. We further examined a temporal effect regarding changes in overall and domain-specific ROB rating distributions. Altogether, 42 studies were assessed, of which the vast majority ( = 34; 81%) was rated as having high ROB. Only one study was judged as having low ROB. The main reasons for high ROB ratings were the use of hospital controls in case-control studies and the omission of any validation of prediction models. However, our temporal analysis results showed a significant reduction in the number of studies with high ROB for the domain "analysis". Nevertheless, the evidence base of high-quality studies that can be used to draw conclusions on the prediction of incident cutaneous melanoma is currently much weaker than the high number of studies on this topic would suggest.

摘要

皮肤黑色素瘤发病率的上升推动了预测个体黑色素瘤风险的统计模型的发展。我们的目的是使用基于PROBAST(预测模型偏倚风险评估工具)的标准化程序,评估已发表的预测模型对皮肤黑色素瘤发病情况的有效性。我们纳入了最近系统评价中识别出的研究,并更新了文献检索,以确保我们的PROBAST评级涵盖所有相关研究。六位评审员使用已发表的“PROBAST评估表”对每项研究的偏倚风险(ROB)进行评估,该评估表由四个领域和一个总体ROB评级组成。我们进一步研究了总体和特定领域ROB评级分布变化的时间效应。总共评估了42项研究,其中绝大多数(n = 34;81%)被评为具有高ROB。只有一项研究被判定为具有低ROB。高ROB评级的主要原因是病例对照研究中使用医院对照以及预测模型未进行任何验证。然而,我们的时间分析结果显示,“分析”领域中具有高ROB的研究数量显著减少。尽管如此,可用于得出皮肤黑色素瘤发病预测结论的高质量研究的证据基础,目前比关于该主题的大量研究所表明的要薄弱得多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b76/9221327/d6b52e41e920/cancers-14-03033-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验