Roivant Sciences, New York, NY 10036, USA.
Biomolecules. 2022 Jun 15;12(6):832. doi: 10.3390/biom12060832.
Recent experimental studies suggest that ATP-driven molecular chaperones can stabilize protein substrates in their native structures out of thermal equilibrium. The mechanism of such non-equilibrium protein folding is an open question. Based on available structural and biochemical evidence, I propose here a unifying principle that underlies the conversion of chemical energy from ATP hydrolysis to the conformational free energy associated with protein folding and activation. I demonstrate that non-equilibrium folding requires the chaperones to break at least one of four symmetry conditions. The Hsp70 and Hsp90 chaperones each break a different subset of these symmetries and thus they use different mechanisms for non-equilibrium protein folding. I derive an upper bound on the non-equilibrium elevation of the native concentration, which implies that non-equilibrium folding only occurs in slow-folding proteins that adopt an unstable intermediate conformation in binding to ATP-driven chaperones. Contrary to the long-held view of Anfinsen's hypothesis that proteins fold to their conformational free energy minima, my results predict that some proteins may fold into thermodynamically unstable native structures with the assistance of ATP-driven chaperones, and that the native structures of some chaperone-dependent proteins may be shaped by their chaperone-mediated folding pathways.
最近的实验研究表明,ATP 驱动的分子伴侣可以在热平衡之外稳定蛋白质底物的天然结构。这种非平衡蛋白质折叠的机制是一个悬而未决的问题。基于现有的结构和生化证据,我在这里提出了一个统一的原则,该原则是将化学能量从 ATP 水解转化为与蛋白质折叠和激活相关的构象自由能的基础。我证明,非平衡折叠需要伴侣至少打破四个对称条件之一。Hsp70 和 Hsp90 伴侣各自打破了这些对称性的不同子集,因此它们使用不同的机制进行非平衡蛋白质折叠。我推导出了天然浓度的非平衡升高的上限,这意味着非平衡折叠仅发生在缓慢折叠的蛋白质中,这些蛋白质在与 ATP 驱动的伴侣结合时采用不稳定的中间构象。与 Anfinsen 假说长期以来的观点相反,该假说认为蛋白质折叠到其构象自由能最小值,我的结果预测,一些蛋白质可能在 ATP 驱动的伴侣的协助下折叠成热力学上不稳定的天然结构,并且一些依赖伴侣的蛋白质的天然结构可能由其伴侣介导的折叠途径塑造。