Suppr超能文献

太阳磁图的复杂网络研究

Complex Network Study of Solar Magnetograms.

作者信息

Muñoz Víctor, Flández Eduardo

机构信息

Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800003, Chile.

出版信息

Entropy (Basel). 2022 May 26;24(6):753. doi: 10.3390/e24060753.

Abstract

In this paper, we study solar magnetic activity by means of a complex network approach. A complex network was built based on information on the space and time evolution of sunspots provided by image recognition algorithms on solar magnetograms taken during the complete 23rd solar cycle. Both directed and undirected networks were built, and various measures such as degree distributions, clustering coefficient, average shortest path, various centrality measures, and Gini coefficients calculated for all them. We find that certain measures are correlated with solar activity and others are anticorrelated, while several measures are essentially constant along the solar cycle. Thus, we show that complex network analysis can yield useful information on the evolution of solar activity and reveal universal features valid at any stage of the solar cycle; the implications of this research for the prediction of solar maxima are discussed as well.

摘要

在本文中,我们通过复杂网络方法研究太阳磁活动。基于在第23个完整太阳周期期间拍摄的太阳磁图上的图像识别算法所提供的黑子时空演化信息构建了一个复杂网络。构建了有向和无向网络,并针对所有网络计算了诸如度分布、聚类系数、平均最短路径、各种中心性度量以及基尼系数等各种度量。我们发现某些度量与太阳活动相关,而其他度量则呈反相关,同时有几个度量在整个太阳周期内基本保持不变。因此,我们表明复杂网络分析可以产生有关太阳活动演化的有用信息,并揭示在太阳周期任何阶段都有效的普遍特征;还讨论了这项研究对太阳活动极大值预测的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/113f/9221611/3ed929f05077/entropy-24-00753-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验